Advanced Search+
ZHAO Yong (赵勇), CHEN Xian (陈贤), FANG Liguang (方利广), YANG Lianfang (杨莲芳), et al.. Effects of Annealing on the Structural and Photoluminescent Properties of Ag-Doped ZnO Nanowires Prepared by Ion Implantation[J]. Plasma Science and Technology, 2013, 15(8): 817-820. DOI: 10.1088/1009-0630/15/8/19
Citation: ZHAO Yong (赵勇), CHEN Xian (陈贤), FANG Liguang (方利广), YANG Lianfang (杨莲芳), et al.. Effects of Annealing on the Structural and Photoluminescent Properties of Ag-Doped ZnO Nanowires Prepared by Ion Implantation[J]. Plasma Science and Technology, 2013, 15(8): 817-820. DOI: 10.1088/1009-0630/15/8/19

Effects of Annealing on the Structural and Photoluminescent Properties of Ag-Doped ZnO Nanowires Prepared by Ion Implantation

Funds: supported by National Natural Science Foundation of China (No.11005059), and partially by the Science and Technology Project of Department of Education of Jiangxi Province, China (No.GJJ12119)
More Information
  • Received Date: March 01, 2012
  • ZnO nanowires deposited on Si substrates were prepared by thermal evaporation of a mixture of ZnO and carbon powder. Ag ions with an energy of 63 keV and a dose of 5×10 15 ions/cm 2 were implanted into the as-prepared ZnO nanowires. After ion implantation, the Ag-implanted ZnO nanowires were annealed in air at different temperatures from 600 ?C to 1000 ?C. Effects of ion implantation and thermal annealing on the structural and photolumines- cent (PL) properties of the ZnO nanowires were investigated by transmission electron microscopy (TEM), selected area energy dispersive X-ray spectroscopy (SAEDX), X-ray diffraction (XRD), and fluorescence spectrophotometry. TEM, HR-TEM, and SAEDX analyses demonstrated that efficient doping of Ag was achieved by ion implantation and the subsequent annealing process. XRD patterns revealed that the hexagonal wurtzite structure of ZnO nanowires was maintained after ion implantation. Photoluminescent emissions of ZnO nanowires were decreased significantly by Ag implantation but could be recovered by thermal annealing. The mechanism of the influence of ion implantation and annealing on the PL intensity was assessed.
  • Related Articles

    [1]Falun SONG (宋法伦), Fei LI (李飞), Mingdong ZHU (朱明冬), Langping WANG (王浪平), Beizhen ZHANG (张北镇), Haitao GONG (龚海涛), Yanqing GAN (甘延青), Xiao JIN (金晓). Development and experimental study of large size composite plasma immersion ion implantation device[J]. Plasma Science and Technology, 2018, 20(1): 14013-014013. DOI: 10.1088/2058-6272/aa88b0
    [2]Yang LIU (刘洋), Kaihong FANG (方开洪), Huiyi LV (吕会议), Jiwei LIU (刘际伟), Boyu WANG (王博宇). Hydrogenation of zirconium film by implantation of hydrogen ions[J]. Plasma Science and Technology, 2017, 19(3): 35502-035502. DOI: 10.1088/2058-6272/19/3/035502
    [3]WEI Jianglong (韦江龙), XIE Yahong (谢亚红), LIANG Lizhen (梁立振), GU Yuming (顾玉明), YI Wei (邑伟), LI Jun (李军), HU Chundong (胡纯栋), XIE Yuanlai (谢远来), JIANG Caichao (蒋才超), TAO Ling (陶玲), SHENG Peng (盛鹏), XU Yongjian (许永建). Design of the Prototype Negative Ion Source for Neutral Beam Injector at ASIPP[J]. Plasma Science and Technology, 2016, 18(9): 954-959. DOI: 10.1088/1009-0630/18/9/13
    [4]ZHAO Yong (赵勇), CHEN Xian (陈贤), FANG Liguang (方利广), YANG Lianfang (杨莲芳), et al.. Effects of Annealing on the Structural and Photoluminescent Properties of Ag-Doped ZnO Nanowires Prepared by Ion Implantation[J]. Plasma Science and Technology, 2013, 15(8): 817-820. DOI: 10.1088/1009-0630/15/8/19
    [5]GAO Huanzhong (高欢忠), HE Long (何龙), HE Zhijiang (何志江), LI Zebin (李泽斌), et al.. Work Function Enhancement of Indium Tin Oxide via Oxygen Plasma Immersion Ion Implantation[J]. Plasma Science and Technology, 2013, 15(8): 791-793. DOI: 10.1088/1009-0630/15/8/14
    [6]Hiroyuki TOBARI, Masaki TANIGUCHI, Mieko KASHIWAGI, Masayuki DAIRAKU, Naotaka UMEDA, Haruhiko YAMANAKA, Kazuki TSUCHIDA, Jumpei TAKEMOTO, Kazuhiro WATANABE, Takashi INOUE, Keishi SAKAMOTO. Vacuum Insulation and Achievement of 980 keV, 185 A/m2 H- Ion Beam Acceleration at JAEA for the ITER Neutral Beam Injector[J]. Plasma Science and Technology, 2013, 15(2): 179-183. DOI: 10.1088/1009-0630/15/2/21
    [7]HU Chundong (胡纯栋) for the NBI team. Preliminary Results of Ion Beam Extraction Tests on EAST Neutral Beam Injector[J]. Plasma Science and Technology, 2012, 14(10): 871-873. DOI: 10.1088/1009-0630/14/10/03
    [8]ZHANG Jianhua(张建华), WANG Naiyan(王乃彦), ZHANG Fengshou(张丰收). Analysis of Accumulating Ability of Heavy Metals in Lotus (Nelumbo nucifera) Improved by Ion Implantation[J]. Plasma Science and Technology, 2012, 14(5): 424-426. DOI: 10.1088/1009-0630/14/5/21
    [9]YE Yanlin (叶沿林), LV Linhui(吕林辉). Some Key Problems Related to Radioactive Ion Beam Physics[J]. Plasma Science and Technology, 2012, 14(5): 360-363. DOI: 10.1088/1009-0630/14/5/02
    [10]LI Jibo(李吉波), DING Siye(丁斯晔), WU Bin(吴斌), HU Chundong(胡纯栋). Simulations of Neutral Beam Ion Ripple Loss on EAST[J]. Plasma Science and Technology, 2012, 14(1): 78-82. DOI: 10.1088/1009-0630/14/1/17

Catalog

    Article views (247) PDF downloads (1681) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return