Di XU (徐迪), Zehua XIAO (肖泽铧), Chunjing HAO (郝春静), Jian QIU (邱剑), Kefu LIU (刘克富). Influence of electrical parameters on H2O2 generation in DBD non-thermal reactor with water mist[J]. Plasma Science and Technology, 2017, 19(6): 64004-064004. DOI: 10.1088/2058-6272/aa61f6
Citation:
Di XU (徐迪), Zehua XIAO (肖泽铧), Chunjing HAO (郝春静), Jian QIU (邱剑), Kefu LIU (刘克富). Influence of electrical parameters on H2O2 generation in DBD non-thermal reactor with water mist[J]. Plasma Science and Technology, 2017, 19(6): 64004-064004. DOI: 10.1088/2058-6272/aa61f6
Di XU (徐迪), Zehua XIAO (肖泽铧), Chunjing HAO (郝春静), Jian QIU (邱剑), Kefu LIU (刘克富). Influence of electrical parameters on H2O2 generation in DBD non-thermal reactor with water mist[J]. Plasma Science and Technology, 2017, 19(6): 64004-064004. DOI: 10.1088/2058-6272/aa61f6
Citation:
Di XU (徐迪), Zehua XIAO (肖泽铧), Chunjing HAO (郝春静), Jian QIU (邱剑), Kefu LIU (刘克富). Influence of electrical parameters on H2O2 generation in DBD non-thermal reactor with water mist[J]. Plasma Science and Technology, 2017, 19(6): 64004-064004. DOI: 10.1088/2058-6272/aa61f6
A dielectric barrier discharge (DBD) reactor is introduced to generate H2O2 by non-thermal plasma with a mixture of oxygen and water mist produced by an ultrasonic atomizer. The results of our experiment show that the energy yield and concentration of the generated H2O2 in the pulsed discharge are much higher than that in AC discharge, due to its high energy efficiency and low heating effect. Micron-sized liquid droplets produced by an ultrasonic atomizer in water mist have large specific surface area, which greatly reduces mass transfer resistance between hydroxyl radicals and water liquids, leading to higher energy yield and H2O2 concentration than in our previous research. The influence of applied voltage, discharge frequency, and environmental temperature on the generated H2O2 is discussed in detail from the viewpoint of the DBD mechanism. The H2O2 concentration of 30 mg l−1, with the energy yield of 2 g kW−1h−1 is obtained by pulsed discharge in our research.
Zhang, Z., Wen, H.F., Li, L. et al. Imaging the distribution of a surface plasmon induced electromagnetic field at the nanoscale with MFSM. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 2024, 63(10): 106001.
DOI:10.35848/1347-4065/ad82c4
2.
Wei, G., Nie, Q., Zhang, Z. et al. Numerical investigation of a plasma-dielectric-plasma waveguide with tunable Fano resonances. Optik, 2024.
DOI:10.1016/j.ijleo.2024.171819
3.
Gao, M., Wang, B., Guo, B. Propagation of surface magnetoplasmon polaritons in a symmetric waveguide with two-dimensional electron gas. Plasma Science and Technology, 2023, 25(9): 095001.
DOI:10.1088/2058-6272/acd09e
4.
Pei, R., Liu, D., Zhang, Q. et al. Fluctuation of Plasmonically Induced Transparency Peaks within Multi-Rectangle Resonators. Sensors, 2023, 23(1): 226.
DOI:10.3390/s23010226
5.
Wang, B., Guo, B. Chiral Berry plasmon dispersion of the two-dimensional electron gas based on a quantum hydrodynamic model. Physics of Plasmas, 2022, 29(8): 082101.
DOI:10.1063/5.0097873
6.
Gric, T., Rafailov, E. Absorption enhancement in hyperbolic metamaterials by means of magnetic plasma. Applied Sciences (Switzerland), 2021, 11(11): 4720.
DOI:10.3390/app11114720