Advanced Search+
Wei ZHANG (张伟), Tongyu WU (吴彤宇), Baogang DING (丁宝钢), Yonggao LI (李永高), Yan ZHOU (周艳), Zejie YIN (阴泽杰). A precision control method for plasma electron density and Faraday rotation angle measurement on HL-2A[J]. Plasma Science and Technology, 2017, 19(7): 75603-075603. DOI: 10.1088/2058-6272/aa64cd
Citation: Wei ZHANG (张伟), Tongyu WU (吴彤宇), Baogang DING (丁宝钢), Yonggao LI (李永高), Yan ZHOU (周艳), Zejie YIN (阴泽杰). A precision control method for plasma electron density and Faraday rotation angle measurement on HL-2A[J]. Plasma Science and Technology, 2017, 19(7): 75603-075603. DOI: 10.1088/2058-6272/aa64cd

A precision control method for plasma electron density and Faraday rotation angle measurement on HL-2A

  • The precision of plasma electron density and Faraday rotation angle measurement is a key indicator for far-infrared laser interferometer/polarimeter plasma diagnosis. To improve the precision, a new multi-channel high signal-to-noise ratio HCOOH interferometer/polarimeter has been developed on the HL-2A tokamak. It has a higher level requirement for phase demodulation precision. This paper introduces an improved real-time fast Fourier transform algorithm based on the field programmable gate array, which significantly improves the precision. We also apply a real-time error monitoring module (REMM) and a stable error
    inhibiting module (SEIM) for precision control to deal with the weak signal. We test the interferometer/polarimeter system with this improved precision control method in plasma discharge experiments and simulation experiments. The experimental results confirm that the plasma electron density precision is better than 1/3600 fringe and the Faraday rotation angle measurement precision is better than 1/900 fringe, while the temporal resolution is 80 ns. This performance can fully meet the requirements of HL-2A.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return