Wei ZHANG (张伟), Tongyu WU (吴彤宇), Baogang DING (丁宝钢), Yonggao LI (李永高), Yan ZHOU (周艳), Zejie YIN (阴泽杰). A precision control method for plasma electron density and Faraday rotation angle measurement on HL-2A[J]. Plasma Science and Technology, 2017, 19(7): 75603-075603. DOI: 10.1088/2058-6272/aa64cd
Citation:
Wei ZHANG (张伟), Tongyu WU (吴彤宇), Baogang DING (丁宝钢), Yonggao LI (李永高), Yan ZHOU (周艳), Zejie YIN (阴泽杰). A precision control method for plasma electron density and Faraday rotation angle measurement on HL-2A[J]. Plasma Science and Technology, 2017, 19(7): 75603-075603. DOI: 10.1088/2058-6272/aa64cd
Wei ZHANG (张伟), Tongyu WU (吴彤宇), Baogang DING (丁宝钢), Yonggao LI (李永高), Yan ZHOU (周艳), Zejie YIN (阴泽杰). A precision control method for plasma electron density and Faraday rotation angle measurement on HL-2A[J]. Plasma Science and Technology, 2017, 19(7): 75603-075603. DOI: 10.1088/2058-6272/aa64cd
Citation:
Wei ZHANG (张伟), Tongyu WU (吴彤宇), Baogang DING (丁宝钢), Yonggao LI (李永高), Yan ZHOU (周艳), Zejie YIN (阴泽杰). A precision control method for plasma electron density and Faraday rotation angle measurement on HL-2A[J]. Plasma Science and Technology, 2017, 19(7): 75603-075603. DOI: 10.1088/2058-6272/aa64cd
1 State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, People’s Republic of China
2 Department of Modern Physics, University of Science and Technology of China, Hefei 230026, People’s Republic of China
3 Shanghai Radio Equipment Research Institute, Shanghai 200090, People’s Republic of China
4 Southwestern Institute of Physics, Chengdu 610041, People’s Republic of China
Funds: This work was supported by National Natural Science Foundation of China (Nos. 11375195, 11575184 and 11275059) and National Magnetic Confinement Fusion Energy Development Research (Nos. 2013GB104003 and 2014GB109001).
The precision of plasma electron density and Faraday rotation angle measurement is a key indicator for far-infrared laser interferometer/polarimeter plasma diagnosis. To improve the precision, a new multi-channel high signal-to-noise ratio HCOOH interferometer/polarimeter has been developed on the HL-2A tokamak. It has a higher level requirement for phase demodulation precision. This paper introduces an improved real-time fast Fourier transform algorithm based on the field programmable gate array, which significantly improves the precision. We also apply a real-time error monitoring module (REMM) and a stable error inhibiting module (SEIM) for precision control to deal with the weak signal. We test the interferometer/polarimeter system with this improved precision control method in plasma discharge experiments and simulation experiments. The experimental results confirm that the plasma electron density precision is better than 1/3600 fringe and the Faraday rotation angle measurement precision is better than 1/900 fringe, while the temporal resolution is 80 ns. This performance can fully meet the requirements of HL-2A.
Gaelzer, R., Fichtner, H., Scherer, K. A dispersion function for the regularized kappa distribution function. Physics of Plasmas, 2024, 31(7): 072112.
DOI:10.1063/5.0212434
2.
Chen, H., Chen, H., Chen, X. et al. The structures of electron-acoustic solitary waves with regularized κ-distribution in a two-electron-temperature plasma. Indian Journal of Physics, 2024.
DOI:10.1007/s12648-024-03479-8
3.
Lu, Q., Wu, C., Chen, H. et al. The Dynamic of Ion Bernstein-Greene-Kruskal Holes in Plasmas With Regularized κ-Distributed Electrons. IEEE Transactions on Plasma Science, 2024, 52(7): 2975-2980.
DOI:10.1109/TPS.2024.3444894
4.
Huo, R., Du, J. Dispersion and Damping Rate of Ion-Acoustic Waves in Regularized Kappa Distributed Plasma. IEEE Transactions on Plasma Science, 2023, 51(8): 2383-2387.
DOI:10.1109/TPS.2023.3293094
5.
Li, Y., Liu, Y. Small-amplitude kinetic Alfvén solitons for hot electrons taking regularized kappa distribution in Earth's inner magnetosphere. Contributions to Plasma Physics, 2023, 63(7): e202300009.
DOI:10.1002/ctpp.202300009
6.
Sarma, P., Karmakar, P.K. Solar plasma characterization in Kappa (κ)-modified polytropic turbomagnetic GES-model perspective. Monthly Notices of the Royal Astronomical Society, 2023, 519(2): 2879-2916.
DOI:10.1093/mnras/stac3178
7.
Liu, Y., Qian, Y. Low frequency electrostatic mode generated by electromagnetic waves in the Earth’s inner magnetosphere with two distinct electrons. Physica Scripta, 2022, 97(12): 125604.
DOI:10.1088/1402-4896/ac9e26
8.
Liu, Y., Zhou, J. The envelope soliton for the nonlinear interaction of Langmuir waves with electron acoustic waves in the Earth's inner magnetosphere. Physics of Plasmas, 2022, 29(9): 092302.
DOI:10.1063/5.0096999