Advanced Search+
Wei ZHANG (张伟), Tongyu WU (吴彤宇), Baogang DING (丁宝钢), Yonggao LI (李永高), Yan ZHOU (周艳), Zejie YIN (阴泽杰). A precision control method for plasma electron density and Faraday rotation angle measurement on HL-2A[J]. Plasma Science and Technology, 2017, 19(7): 75603-075603. DOI: 10.1088/2058-6272/aa64cd
Citation: Wei ZHANG (张伟), Tongyu WU (吴彤宇), Baogang DING (丁宝钢), Yonggao LI (李永高), Yan ZHOU (周艳), Zejie YIN (阴泽杰). A precision control method for plasma electron density and Faraday rotation angle measurement on HL-2A[J]. Plasma Science and Technology, 2017, 19(7): 75603-075603. DOI: 10.1088/2058-6272/aa64cd

A precision control method for plasma electron density and Faraday rotation angle measurement on HL-2A

Funds: This work was supported by National Natural Science
Foundation of China (Nos. 11375195, 11575184 and
11275059) and National Magnetic Confinement Fusion
Energy Development Research (Nos. 2013GB104003 and
2014GB109001).
More Information
  • The precision of plasma electron density and Faraday rotation angle measurement is a key indicator for far-infrared laser interferometer/polarimeter plasma diagnosis. To improve the precision, a new multi-channel high signal-to-noise ratio HCOOH interferometer/polarimeter has been developed on the HL-2A tokamak. It has a higher level requirement for phase demodulation precision. This paper introduces an improved real-time fast Fourier transform algorithm based on the field programmable gate array, which significantly improves the precision. We also apply a real-time error monitoring module (REMM) and a stable error
    inhibiting module (SEIM) for precision control to deal with the weak signal. We test the interferometer/polarimeter system with this improved precision control method in plasma discharge experiments and simulation experiments. The experimental results confirm that the plasma electron density precision is better than 1/3600 fringe and the Faraday rotation angle measurement precision is better than 1/900 fringe, while the temporal resolution is 80 ns. This performance can fully meet the requirements of HL-2A.
  • Related Articles

    [1]Lei YE (叶磊), Xiaotao XIAO (肖小涛), Yingfeng XU (徐颖峰), Zongliang DAI (戴宗良), Shaojie WANG (王少杰). Implementation of field-aligned coordinates in a semi-Lagrangian gyrokinetic code for tokamak turbulence simulation[J]. Plasma Science and Technology, 2018, 20(7): 74008-074008. DOI: 10.1088/2058-6272/aac013
    [2]H R MIRZAEI, R AMROLLAHI. Design, simulation and construction of the Taban tokamak[J]. Plasma Science and Technology, 2018, 20(4): 45103-045103. DOI: 10.1088/2058-6272/aaa669
    [3]Rui MA (马瑞), Fan XIA (夏凡), Fei LING (凌飞), Jiaxian LI (李佳鲜). Acceleration optimization of real-time equilibrium reconstruction for HL-2A tokamak discharge control[J]. Plasma Science and Technology, 2018, 20(2): 25601-025601. DOI: 10.1088/2058-6272/aa9432
    [4]Hailong GAO (高海龙), Tao XU (徐涛), Zhongyong CHEN (陈忠勇), Ge ZHUANG (庄革). Plasma equilibrium calculation in J-TEXT tokamak[J]. Plasma Science and Technology, 2017, 19(11): 115101. DOI: 10.1088/2058-6272/aa7f26
    [5]GAO Hailong (高海龙), XU Tao (徐涛), ZHANG Fan (张帆), JIAN Xiang (简翔), ZHANG Xiaoqing (张晓卿), YANG Zhoujun (杨州军), GAO Li (高丽), JIANG Zhonghe (江中和), ZHUANG Ge (庄革). Equilibrium Reconstruction and Integration of EFIT with Diagnoses in J-TEXT Tokamak[J]. Plasma Science and Technology, 2016, 18(12): 1225-1230. DOI: 10.1088/1009-0630/18/12/14
    [6]JIANG Chunyu (蒋春雨), CAO Jing (曹靖), JIANG Xiaofei (蒋小菲), ZHAO Yanfeng (赵艳凤), SONG Xianying (宋先瑛), YIN Zejie (阴泽杰). Real-Time Bonner Sphere Spectrometry on the HL-2A Tokamak[J]. Plasma Science and Technology, 2016, 18(6): 699-702. DOI: 10.1088/1009-0630/18/6/19
    [7]HONG Rongjie (洪荣杰), YANG Zhongshi (杨钟时), NIU Guojian (牛国鉴), LUO Guangnan (罗广南). A Molecular Dynamics Study on the Dust-Plasma/Wall Interactions in the EAST Tokamak[J]. Plasma Science and Technology, 2013, 15(4): 318-322. DOI: 10.1088/1009-0630/15/4/03
    [8]LI Li(李莉), LIU Yue (刘悦), XU Xinyang(许欣洋), XIA Xinnian(夏新念). The Effect of Equilibrium Current Profiles on MHD Instabilities in Tokamaks[J]. Plasma Science and Technology, 2012, 14(1): 14-19. DOI: 10.1088/1009-0630/14/1/04
    [9]HE Zhixiong, DONG Jiaqi, HE Hongda, JIANG Haibin, GAO Zhe, ZHANG Jinhua. MHD Equilibrium Configuration Reconstructions for HL-2A Tokamak[J]. Plasma Science and Technology, 2011, 13(4): 424-430.
    [10]GUO Wei, WANG Shaojie, LI Jiangang. Vacuum Poloidal Magnetic Field of Tokamak in Alternating-Current Operation[J]. Plasma Science and Technology, 2010, 12(6): 657-660.
  • Cited by

    Periodical cited type(8)

    1. Gaelzer, R., Fichtner, H., Scherer, K. A dispersion function for the regularized kappa distribution function. Physics of Plasmas, 2024, 31(7): 072112. DOI:10.1063/5.0212434
    2. Chen, H., Chen, H., Chen, X. et al. The structures of electron-acoustic solitary waves with regularized κ-distribution in a two-electron-temperature plasma. Indian Journal of Physics, 2024. DOI:10.1007/s12648-024-03479-8
    3. Lu, Q., Wu, C., Chen, H. et al. The Dynamic of Ion Bernstein-Greene-Kruskal Holes in Plasmas With Regularized κ-Distributed Electrons. IEEE Transactions on Plasma Science, 2024, 52(7): 2975-2980. DOI:10.1109/TPS.2024.3444894
    4. Huo, R., Du, J. Dispersion and Damping Rate of Ion-Acoustic Waves in Regularized Kappa Distributed Plasma. IEEE Transactions on Plasma Science, 2023, 51(8): 2383-2387. DOI:10.1109/TPS.2023.3293094
    5. Li, Y., Liu, Y. Small-amplitude kinetic Alfvén solitons for hot electrons taking regularized kappa distribution in Earth's inner magnetosphere. Contributions to Plasma Physics, 2023, 63(7): e202300009. DOI:10.1002/ctpp.202300009
    6. Sarma, P., Karmakar, P.K. Solar plasma characterization in Kappa (κ)-modified polytropic turbomagnetic GES-model perspective. Monthly Notices of the Royal Astronomical Society, 2023, 519(2): 2879-2916. DOI:10.1093/mnras/stac3178
    7. Liu, Y., Qian, Y. Low frequency electrostatic mode generated by electromagnetic waves in the Earth’s inner magnetosphere with two distinct electrons. Physica Scripta, 2022, 97(12): 125604. DOI:10.1088/1402-4896/ac9e26
    8. Liu, Y., Zhou, J. The envelope soliton for the nonlinear interaction of Langmuir waves with electron acoustic waves in the Earth's inner magnetosphere. Physics of Plasmas, 2022, 29(9): 092302. DOI:10.1063/5.0096999

    Other cited types(0)

Catalog

    Article views (276) PDF downloads (601) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return