Advanced Search+
Hongshan ZHU (祝宏山), Shengxia DUAN (段升霞), Lei CHEN (陈磊), Ahmed ALSAEDI, Tasawar HAYAT, Jiaxing LI (李家星). Plasma-induced grafting of acrylic acid on bentonite for the removal of U(VI) from aqueous solution[J]. Plasma Science and Technology, 2017, 19(11): 115501. DOI: 10.1088/2058-6272/aa8168
Citation: Hongshan ZHU (祝宏山), Shengxia DUAN (段升霞), Lei CHEN (陈磊), Ahmed ALSAEDI, Tasawar HAYAT, Jiaxing LI (李家星). Plasma-induced grafting of acrylic acid on bentonite for the removal of U(VI) from aqueous solution[J]. Plasma Science and Technology, 2017, 19(11): 115501. DOI: 10.1088/2058-6272/aa8168

Plasma-induced grafting of acrylic acid on bentonite for the removal of U(VI) from aqueous solution

Funds: support from the Special Scientific Fund of Public Welfare Profession of China (No. 201509074) and National Natural Science Foundation of China (Nos. 21272236, U1230202) are acknowledged.
More Information
  • Received Date: May 02, 2017
  • Fabrication of reusable adsorbents with satisfactory adsorption capacity and using environment-friendly preparation processes is required for the environment-related applications. In this study, acrylic acid (AA) was grafted onto bentonite (BT) to generate an AA-graft-BT (AA-g-BT) composite using a plasma-induced grafting technique considered to be an environment-friendly method. The as-prepared composite was characterized by scanning electron microscopy, x-ray powder diffraction, thermal gravity analysis, Fourier transform infrared spectroscopy and Barrett–Emmett–Teller analysis, demonstrating the successful grafting of AA onto BT. In addition, the removal of uranium(VI)(U(VI)) from contaminated aqueous solutions was examined using the as-prepared composite. The influencing factors, including contact time, pH value, ionic strength, temperature, and initial concentration, for the removal of U(VI) were investigated by batch experiments. The experimental process fitted best with the pseudo-second-order kinetic and the Langmuir models. Moreover, thermodynamic investigation revealed a spontaneous and endothermic process. Compared with previous adsorbents, AA-g-BT has potential practical applications in treating U(VI)-contaminated solutions.
  • [1]
    Duan S X et al 2016 J. Taiwan Inst. Chem. Eng. 65 367
    [2]
    Jemison N E et al 2016 Environ. Sci. Technol. 50 12232
    [3]
    Liu X et al 2016 Sci. China Chem. 59 869
    [4]
    Duan S X et al 2017 Plasma Process. Polym. e1600218
    [5]
    Duan S X et al 2017 ACS Sustainable Chem. Eng. 5 4073
    [6]
    ZengM Y et al 2014 RSC Adv. 4 5021
    [7]
    Liu J et al 2016 Chem. Eng. J. 288 505
    [8]
    Zhao Y G et al 2014 RSC Adv. 4 32710
    [9]
    Sun Y B et al 2016 Environ. Sci. Technol. 50 4459
    [10]
    Ilaiyaraja P et al 2017 J. Hazard. Mater. 328 1
    [11]
    Luckham P F and Rossi S 1999 Adv. Colloid Interface Sci. 82 43
    [12]
    Li J X et al 2009 Colloids Surf. A 349 195
    [13]
    Imbert C and Villar M V 2006 Appl. Clay Sci. 32 197
    [14]
    Anirudhan T S, Tharun A R and Rejeena S R 2011 Ind. Eng. Chem. Res. 50 1866
    [15]
    Hu R et al 2016 RSC Adv. 6 65136
    [16]
    Mansuroglu D, Goksen K and Bilikmen S 2015 Plasma Sci. Technol. 17 488
    [17]
    Yin S H, Ren L and Wang Y J 2017 Plasma Sci. Technol. 19 015501
    [18]
    Yu J et al 2014 Plasma Sci. Technol. 16 767
    [19]
    Duan S X et al 2017 RSC Adv. 7 21124
    [20]
    Grundke K, Boerner M and Jacobasch H J 1991 Colloids Surf. 58 47
    [21]
    Bismarck A and Springer J 1999 Colloids Surf. A 159 331
    [22]
    Wang Y N et al 2017 J. Radioanal. Nucl. Chem. 311 209
    [23]
    Shao D D et al 2010 J. Phys. Chem. C 114 21524
    [24]
    Aytas S, Yurtlu M and Donat R 2009 J. Hazard. Mater. 172 667
    [25]
    Zong P F et al 2015 J. Mol. Liq. 209 358
    [26]
    Sasmal D et al 2017 Int. J. Biol. Macromol. 97 585
    [27]
    Mishra S, Rani G U and Sen G 2012 Carbohydr. Polym. 87 2255
    [28]
    Liu X H et al 2017 Appl. Surf. Sci. 411 331
    [29]
    Vipulanandan C and Mohammed A 2015 J. Petrol. Sci. Eng. 130 86
    [30]
    Sahiner N and Seven F 2014 Energy 71 170
    [31]
    Wu Y K et al 2017 Eur. J. Pharm. Biopharm. 112 148
    [32]
    GeHC andWangJC2017 Chemosphere 169 443
    [33]
    Wang Y Q et al 2012 J. Radioanal. Nucl. Chem. 293 231
    [34]
    Xiong J et al 2017 ACS Sustainable Chem. Eng. 5 1924
    [35]
    Chen Y G et al 2012 J. Radioanal. Nucl. Chem. 292 1339
    [36]
    Sun Y B et al 2014 Geochim. Cosmochim. Acta 140 621
    [37]
    Baeyens B and Bradbury M H 1997 J. Contam. Hydrol. 27 199
    [38]
    Zou Y D et al 2016 Environ. Sci. Technol. 50 3658
    [39]
    ShaikhSM R et al 2017 Chem. Eng. J. 311 265
    [40]
    Liu X et al 2016 Chem. Eng. J. 302 763
    [41]
    Khalili F and Al-Banna G 2015 J. Environ. Radioact. 146 16
    [42]
    Anirudhan T S and Rijith S 2012 J. Environ. Radioact. 106 8
    [43]
    Liu J et al 2006 Appl. Clay Sci. 32 197
  • Related Articles

    [1]Na LI, Edward HAREFA, Weidong ZHOU. Nanosecond laser preheating effect on ablation morphology and plasma emission in collinear dual-pulse laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2022, 24(11): 115507. DOI: 10.1088/2058-6272/ac8039
    [2]Qiang LIU (刘强), Qi MIN (敏琦), Maogen SU (苏茂根), Xingbang LIU (刘兴邦), Shiquan CAO (曹世权), Duixiong SUN (孙对兄), Chenzhong DONG (董晨钟), Yanbiao FU (符彦飙). Numerical simulation of nanosecond laser ablation and plasma characteristics considering a real gas equation of state[J]. Plasma Science and Technology, 2021, 23(12): 125001. DOI: 10.1088/2058-6272/ac2815
    [3]A M EL SHERBINI, M M HAGRASS, M R M RIZK, E A EL-BADAWY. Plasma ignition threshold disparity between silver nanoparticle-based target and bulk silver target at different laser wavelengths[J]. Plasma Science and Technology, 2019, 21(1): 15502-015502. DOI: 10.1088/2058-6272/aadf7e
    [4]Cailong FU (付彩龙), Qi WANG (王奇), Hongbin DING (丁洪斌). Numerical simulation of laser ablation of molybdenum target for laser-induced breakdown spectroscopic application[J]. Plasma Science and Technology, 2018, 20(8): 85501-085501. DOI: 10.1088/2058-6272/aab661
    [5]Jing QI (齐婧), Siqi ZHANG (张思齐), Tian LIANG (梁田), Ke XIAO (肖珂), Weichong TANG (汤伟冲), Zhiyuan ZHENG (郑志远). Ablation characteristics of carbon-doped glycerol irradiated by a 1064 nm nanosecond pulse laser[J]. Plasma Science and Technology, 2018, 20(3): 35508-035508. DOI: 10.1088/2058-6272/aa9faa
    [6]Dongye ZHAO (赵栋烨), Cong LI (李聪), Yong WANG (王勇), Zhiwei WANG (王志伟), Liang GAO (高亮), Zhenhua HU (胡振华), Jing WU (吴婧), Guang-Nan LUO (罗广南), Hongbin DING (丁洪斌). Temporal and spatial dynamics of optical emission from laser ablation of the first wall materials of fusion device[J]. Plasma Science and Technology, 2018, 20(1): 14022-014022. DOI: 10.1088/2058-6272/aa96a0
    [7]LIANG Tian (梁田), ZHENG Zhiyuan (郑志远), ZHANG Siqi (张思齐), TANG Weichong (汤伟冲), XIAO Ke (肖珂), LIANG Wenfei (梁文飞), GAO Lu (高禄), GAO Hua (高华). Influence of Surface Radius Curvature on Laser Plasma Propulsion with Ablation Water Propellant[J]. Plasma Science and Technology, 2016, 18(10): 1034-1037. DOI: 10.1088/1009-0630/18/10/11
    [8]ZHANG Junmin (张俊民), LU Chunrong (卢春荣), GUAN Yonggang (关永刚), LIU Weidong (刘卫东). Calculation of Nozzle Ablation During Arcing Period in an SF6 Auto-Expansion Circuit Breaker[J]. Plasma Science and Technology, 2016, 18(5): 506-511. DOI: 10.1088/1009-0630/18/5/11
    [9]ZHENG Zhiyuan(郑志远), GAO Hua(高华), GAO Lu(高禄), XING Jie(邢杰). Experimental Investigation of the Properties of an Acoustic Wave Induced by Laser Ablation of a Solid Target in Water-Confined Plasma Propulsion[J]. Plasma Science and Technology, 2014, 16(11): 1032-1035. DOI: 10.1088/1009-0630/16/11/06
    [10]V. SIVAKUMARAN, AJAI KUMAR, R. K. SINGH, V. PRAHLAD, H. C. JOSHI. Atomic Processes in Emission Characteristics of a Lithium Plasma Plume Formed by Double-Pulse Laser Ablation[J]. Plasma Science and Technology, 2013, 15(3): 204-208. DOI: 10.1088/1009-0630/15/3/02

Catalog

    Article views (244) PDF downloads (666) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return