Advanced Search+
Yakun LIU (刘亚坤), Zhengcai FU (傅正财), Quanzhen LIU (刘全桢), Baoquan LIU (刘宝全), Anirban GUHA. Experimental and analytical investigation on metal damage suffered from simulated lightning currents[J]. Plasma Science and Technology, 2017, 19(12): 125301. DOI: 10.1088/2058-6272/aa8aca
Citation: Yakun LIU (刘亚坤), Zhengcai FU (傅正财), Quanzhen LIU (刘全桢), Baoquan LIU (刘宝全), Anirban GUHA. Experimental and analytical investigation on metal damage suffered from simulated lightning currents[J]. Plasma Science and Technology, 2017, 19(12): 125301. DOI: 10.1088/2058-6272/aa8aca

Experimental and analytical investigation on metal damage suffered from simulated lightning currents

Funds: supported by a grant from National Natural Science Foundation of China (No. 51577117).
More Information
  • Received Date: July 05, 2017
  • The damage of two typical metal materials, Al alloy 3003 and steel alloy Q235B, subjected to four representative lightning current components are investigated by laboratory and analytical studies to provide fundamental data for lightning protection. The four lightning components simulating the natural lightning consist of the first return stroke, the continuing current of interval stroke, the long continuing current, and the subsequent stroke, with amplitudes 200 kA, 8 kA, 400 A, and 100 kA, respectively. The damage depth and area suffered from different lightning components are measured by the ultrasonic scanning system. And the temperature rise is measured by the thermal imaging camera. The results show that, for both Al 3003 and steel Q235B, the first return stroke component results in the largest damage area with damage depth 0.02 mm uttermost. The long continuing current component leads to the deepest damage depth of 3.3 mm for Al 3003 and much higher temperature rise than other components. The correlation analysis between damage results and lightning parameters indicates that the damage depth has a positive correlation with charge transfer. The damage area is mainly determined by the current amplitude and the temperature rise increases linearly with the charge transfer larger.
  • [1]
    Wang Y et al 2017 Plasma Sci. Technol. 19 064016
    [2]
    Liu Y K et al 2016 Electric Power Syst. Res. 139 81
    [3]
    IEC 2009 Protection Against Lightning-Part 3: Physical Damage to Structures and Life Hazard (Geneva: IEC) pp 62305–3
    [4]
    SAE 2013 Aircraft Lightning Test Methods (Warrendale, PA: SAE International) ARP-5416
    [5]
    MIL 1980 Lightning Quali?cation Test Techniques for Aerospace Vehicles and Hardware (USA)
    [6]
    Rupke E 2002 Lightning Direct Effect Handbook (Pitts?eld, MA: USA AGATE) AGATE-WP 3.1-031027-043-Design Guideline
    [7]
    Cooray V 2010 Lightning Protection London the Institution of Engineering and Technology (London: IET)
    [8]
    Metwally I A, Heidler F and Zischank W 2004 Eur. Trans. Electr. Power 14 201
    [9]
    Polykrati A D et al 2004 IEE Proc. Gener. Transm. Distrib. 151 90
    [10]
    Paisios M P, Karagiannopoulos C G and Bourkas P D 2007 Electr. Power Syst. Res. 78 80
    [11]
    Kern A and Zischank W J 1988 Melting effects on metal sheets and air termination wires caused by direct lightning strikes Int. Conf. on Lightning Protection (Graz: IEEE)
    [12]
    Chemartin L et al 2012 Direct effects of lightning on aircraft structure: analysis of the thermal, electrical and mechanical constraints J. Aerosp. Lab 5 1–15
    [13]
    Bruce C E R and Golde R H 1941 J. Inst. Electr. Eng. II 88 487
    [14]
    He Y W, Fu Z C and Jiang A F 2015 On the simulation of lightning current for the application in lightning arrester and material ablation tests 2015 Asia-Paci?c Symp. on Electromagnetic Compatibility (Taipei: IEEE)
    [15]
    Liu Y K et al 2016 High Voltage Eng. 42 1578 (in Chinese)
    [16]
    Gao X et al 2016 Analysis on the choosing of test electrode for lightning current metal ablation experiments Proc. 33rd Int. Conf. on Lightning Protection (Estoril: IEEE)
    [17]
    Zischank W et al 1995 Reliable simulation of metal surface penetration by lightning continuing currents Int. Aerospace and Ground Conf. on Lightning and Static Electricity (Williamsburg, NY: USDOE)
    [18]
    Kern A 1991 Simulation and measurement of melting effects on metal sheets caused by direct lightning strikes Proc. Int. Aerospace and Ground Conf. on Lightning and Static Electricity (Cocoa Beach, FL: NASA)
    [19]
    Uhlig F et al 1995 Experimental simulations of lightning impacts on aeronautical structural materials Proc. Int. Aerospace and Ground Conf. on Lightning and Static Electricity (Williamsburg, NY: NASA)
    [20]
    Gouega A M et al 2000 Eur. Phys. J. 11 111–22
    [21]
    Liu Y K et al 2015 Analysis and experiment on metal ablation protection of the large ?oating roof oil tanks struck by direct lightning Proc. 19th Int. Symp. on High Voltage Engineering (Pilsen: CIGRE)
  • Related Articles

    [1]Chuang WANG (王闯), Xi CHEN (陈曦), Kai TANG (唐凯), Pengfei LI (李鹏斐). Study on the discharge mechanism and EM radiation characteristics of Trichel pulse discharge in air[J]. Plasma Science and Technology, 2019, 21(5): 55402-055402. DOI: 10.1088/2058-6272/ab03ab
    [2]Fanrong KONG (孔繁荣), Qiuyue NIE (聂秋月), Shu LIN (林澍), Zhibin WANG (王志斌), Bowen LI (李博文), Shulei ZHENG (郑树磊), Binhao JIANG (江滨浩). Studies on omnidirectional enhancement of giga-hertz radiation by sub-wavelength plasma modulation[J]. Plasma Science and Technology, 2018, 20(1): 14017-014017. DOI: 10.1088/2058-6272/aa8f3e
    [3]Xiangyang LIU (刘向阳), Siyu WANG (王司宇), Yang ZHOU (周阳), Zhiwen WU (武志文), Kan XIE (谢侃), Ningfei WANG (王宁飞). Thermal radiation properties of PTFE plasma[J]. Plasma Science and Technology, 2017, 19(6): 64012-064012. DOI: 10.1088/2058-6272/aa65e8
    [4]LI Mei (李美), ZHANG Junpeng (张俊鹏), HU Yang (胡杨), ZHANG Hantian (张含天), WU Yifei (吴益飞). Simulation of Fault Arc Based on Different Radiation Models in a Closed Tank[J]. Plasma Science and Technology, 2016, 18(5): 549-553. DOI: 10.1088/1009-0630/18/5/18
    [5]DONG Yunsong (董云松), YANG Jiamin (杨家敏), SONG Tianming (宋天明), ZHU Tuo (朱托), HUANG Chengwu (黄成武). Radiation Hydrodynamic Simulations in the Planar Scheme for the Fundamental Studies of Shock Ignition[J]. Plasma Science and Technology, 2016, 18(4): 376-381. DOI: 10.1088/1009-0630/18/4/08
    [6]SONG Tianming (宋天明), YANG Jiamin (杨家敏), ZHU Tuo (朱托), LI Zhichao (李志超), HUANG Chengwu (黄成武). Continued Study on Hohlraum Radiation Source with Approximately Constant Radiation Temperature[J]. Plasma Science and Technology, 2016, 18(4): 342-345. DOI: 10.1088/1009-0630/18/4/02
    [7]CHEN Lei (陈蕾), LIU Xiang (刘翔), LIAN Youyun (练友运), CAI Laizhong (才来中). Numerical Study of High Heat Flux Performances of Flat-Tile Divertor Mock-ups with Hypervapotron Cooling Concept[J]. Plasma Science and Technology, 2015, 17(9): 792-796. DOI: 10.1088/1009-0630/17/9/12
    [8]YU Jianyang (俞建阳), CHEN Fu (陈浮), LIU Huaping (刘华坪), SONG Yanping (宋彦萍). Numerical Study of Fluid Dynamics and Heat Transfer Induced by Plasma Discharges[J]. Plasma Science and Technology, 2015, 17(1): 41-49. DOI: 10.1088/1009-0630/17/1/09
    [9]SONG Tianming (宋天明), YANG Jiamin (杨家敏), YANG Dong (杨冬), et al.. Experimental Study of the X-Ray Radiation Source at Approximately Constant Radiation Temperature[J]. Plasma Science and Technology, 2013, 15(11): 1108-1111. DOI: 10.1088/1009-0630/15/11/06
    [10]G.Yu. YUSHKOV, K.P. SAVKIN, A.G. NIKOLAEV, E.M. OKS, A.V. VODOPYANOV, I.V. IZOTOV, D.A. MANSFELD. Formation of Multicharged Metal Ions in Vacuum Arc Plasma Heated by Gyrotron Radiation[J]. Plasma Science and Technology, 2011, 13(5): 596-599.
  • Cited by

    Periodical cited type(14)

    1. Luo, Y., Shi, Y., Zhuang, K. et al. Study on the Evolution of Physicochemical Properties of Carbon Black at Different Regeneration Stages of Diesel Particulate Filters Regenerated by Non-Thermal Plasma. Processes, 2024, 12(6): 1113. DOI:10.3390/pr12061113
    2. Shi, Y., Zhou, Y., Li, Z. et al. Effect of Temperature-controlled conditions on the decomposition of particulate matter deposited in the diesel particulate filter channel by treatment with Non-thermal plasma. Fuel, 2023. DOI:10.1016/j.fuel.2023.128547
    3. Cai, Z., Yan, F., Hu, J. et al. Temperature characteristics of silicon carbide particulate filter during drop-to-idle regeneration applied to a diesel vehicle. Fuel, 2023. DOI:10.1016/j.fuel.2022.126921
    4. Ye, J., E, J., Peng, Q. Effects of porosity setting and multilayers of diesel particulate filter on the improvement of regeneration performance. Energy, 2023. DOI:10.1016/j.energy.2022.126063
    5. Yao, D., Hu, J., Zhang, B. et al. Research on dynamic modeling and carbon load estimation of diesel particulate filter. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2023, 45(4): 12165-12180. DOI:10.1080/15567036.2023.2269126
    6. Lu, Y., Shi, Y., Cai, Y. et al. Physicochemical Properties of Particulate Matter Deposited in DPF Channels During Regeneration by Non-Thermal Plasma | [NTP 再生 DPF 孔道内沉积颗粒物的理化特性]. Neiranji Xuebao/Transactions of CSICE (Chinese Society for Internal Combustion Engines), 2023, 41(4): 307-314. DOI:10.16236/j.cnki.nrjxb.202304036
    7. Shi, Y., Zhou, Y., Li, Z. et al. Effect of temperature control conditions on DPF regeneration by nonthermal plasma. Chemosphere, 2022. DOI:10.1016/j.chemosphere.2022.134787
    8. Qiang, T.P., Peng, L.Y., De Yuan, W. et al. Effects of Catalyst Structural Parameters on the Performance of Exhaust Gas Aftertreatment System of Diesel Engines. International Journal of Automotive Technology, 2022, 23(4): 1085-1097. DOI:10.1007/s12239-022-0095-x
    9. Shi, Y., Lu, Y., Cai, Y. et al. Evolution of particulate matter deposited in the DPF channel during low-temperature regeneration by non-thermal plasma. Fuel, 2022. DOI:10.1016/j.fuel.2022.123552
    10. Dong, R., Zhang, Z., Ye, Y. et al. Review of Particle Filters for Internal Combustion Engines. Processes, 2022, 10(5): 993. DOI:10.3390/pr10050993
    11. Lu, Y., Shi, Y., Cai, Y. et al. Microcrystal Structure and C/O Element Occurrence State of Diesel PM by Non-Thermal Plasma Oxidation at Different Reaction Temperatures. International Journal of Automotive Technology, 2021, 22(6): 1711-1721. DOI:10.1007/s12239-021-0147-7
    12. Shi, Y., Lu, Y., Cai, Y. et al. Experimental study on the parameter optimization and application of a packed-bed dielectric barrier discharge reactor in diesel particulate filter regeneration. Plasma Science and Technology, 2021, 23(11): 115505. DOI:10.1088/2058-6272/ac1dfd
    13. Shi, Y., Lu, Y., Cai, Y. et al. Analysis of the microstructure and elemental occurrence state of residual ash-PM following DPF regeneration by injecting oxygen into non-thermal plasma. Plasma Science and Technology, 2021, 23(9): 095504. DOI:10.1088/2058-6272/ac1058
    14. Li, J., Lu, H., Wang, Q. et al. Enhanced removal of ultrafine particles from kerosene combustion using a dielectric barrier discharge reactor packed with porous alumina balls. Plasma Science and Technology, 2021, 23(7): 075505. DOI:10.1088/2058-6272/abffaa

    Other cited types(0)

Catalog

    Article views (241) PDF downloads (786) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return