Advanced Search+
SONG Tianming (宋天明), YANG Jiamin (杨家敏), ZHU Tuo (朱托), LI Zhichao (李志超), HUANG Chengwu (黄成武). Continued Study on Hohlraum Radiation Source with Approximately Constant Radiation Temperature[J]. Plasma Science and Technology, 2016, 18(4): 342-345. DOI: 10.1088/1009-0630/18/4/02
Citation: SONG Tianming (宋天明), YANG Jiamin (杨家敏), ZHU Tuo (朱托), LI Zhichao (李志超), HUANG Chengwu (黄成武). Continued Study on Hohlraum Radiation Source with Approximately Constant Radiation Temperature[J]. Plasma Science and Technology, 2016, 18(4): 342-345. DOI: 10.1088/1009-0630/18/4/02

Continued Study on Hohlraum Radiation Source with Approximately Constant Radiation Temperature

More Information
  • Received Date: August 24, 2015
  • An experiment was performed on the Shenguang III prototype laser facility to con?tinue the study on hohlraum radiation source with approximately constant radiation temperature using a continuously shaped laser pulse. A radiation source with a flattop temperature of about 130 eV that lasted about 5 ns was obtained. The previous analytical iteration method based on power balance and self-similar solution of ablation was modi?ed taking into account the plasma movements and it was used to design the laser pulse shape for experiment. A comparison between experimental results and simulation is presented and better agreement was achieved using the modi?ed method. Further improvements are discussed.
  • 1 Lindl J D. 1995, Phys. Plasmas, 2: 3933 2 Lindl J D, Amendt P, Berger R L, et al. 2004, Phys.Plasmas, 11: 339 3 Remington B A, Drake R P, Ryutov D D. 2006, Rev.Mod. Phys., 78: 755 4 Lindl J D, Landen O, Edwards J, et al. 2014, Phys.Plasmas, 21: 72 5 Back C A, Bauer J D, Landen O L, et al. 2000, Phys.Rev. Lett., 84: 274 6 Back C A, Bauer J D, Hammer J H, et al. 2000, Phys.Plasmas, 7: 2126 7 Casner A, Masse L, Liberatore S, et al. 2015, Phys.Plasmas, 22: 056302 8 Martinez D, Smalyuk V, Kane J, et al. 2015, Phys.Rev. Lett., 114: 215004 9 Kauffman R L, Kilkenny J. 1998, Ablation-Driven Rayleigh-Taylor Instability. ICF Annual Report,Lawrence Livermore National Laboratory, p.19 10 Young P E, Rosen M D, Hammer J H, et al. 2008,Phys. Rev. Lett., 101: 035001 11 Song T, Yang J, Yang D, et al. 2013, Plasma Sci. Technol., 15: 1108 12 Stygar W A, Olson R E, Spielman R B, et al. 2001,Phys. Rev. E, 64: 11 13 Schneider M B, Hinkel D E, Landen O L, et al. 2006,Phys. Plasmas, 13: 112701 14 Hammer J H, Rosen M D. 2003, Phys. Plasmas, 10:1829 15 Colombant D, Tonon G F. 1973, J. Appl. Phys., 44:3524 16 Li Z, Jiang S, Liu S, et al. 2010, Rev. Sci. Instrum.,81: 073504 17 Li Z, Zhu X, Jiang X, et al. 2011, Rev. Sci. Instrum.,82: 106106 18 Pei W. 2007, Communications in Computational Physics, 2: 255 19 Eder D C, Koniges A E, Jones O S, et al. 2004, Nucl.Fusion, 44: 12 20 Lin Z, Jiang S, Wu S, et al. 2011, Comput. Phys.Comm., 182: 1361
  • Related Articles

    [1]J KO, T H KIM, S CHOI. Numerical analysis of thermal plasma scrubber for CF4 decomposition[J]. Plasma Science and Technology, 2019, 21(6): 64002-064002. DOI: 10.1088/2058-6272/aafbba
    [2]Runhui WU (邬润辉), Song CHAI (柴忪), Jiaqi LIU (刘佳琪), Shiyuan CONG (从拾源), Gang MENG (孟刚). Numerical simulation and analysis of lithium plasma during low-pressure DC arc discharge[J]. Plasma Science and Technology, 2019, 21(4): 44002-044002. DOI: 10.1088/2058-6272/aafbc7
    [3]Yanqing HUANG (黄艳清), Tianyang XIA (夏天阳), Bin GUI (桂彬). Numerical linear analysis of the effects of diamagnetic and shear flow on ballooning modes[J]. Plasma Science and Technology, 2018, 20(4): 45101-045101. DOI: 10.1088/2058-6272/aaa4f1
    [4]Shanwen ZHANG (张善文), Yuntao SONG (宋云涛), Linlin TANG (汤淋淋), Zhongwei WANG (王忠伟), Xiang JI (戢翔), Shuangsong DU (杜双松). Electromagnetic–thermal–structural coupling analysis of the ITER edge localized mode coil with fiexible supports[J]. Plasma Science and Technology, 2017, 19(5): 55601-055601. DOI: 10.1088/2058-6272/aa57f4
    [5]CHEN Longwei (陈龙威), MENG Yuedong (孟月东), ZUO Xiao (左潇), REN Zhaoxing (任兆杏), WU Kenan (吴克难), WANG Shuai (王帅). On the Characteristics of Coaxial-Type Microwave Excited Linear Plasma: a Simple Numerical Analysis[J]. Plasma Science and Technology, 2015, 17(5): 372-383. DOI: 10.1088/1009-0630/17/5/04
    [6]LI Weixin (李炜昕), YUAN Zhensheng (袁振圣), CHEN Zhenmao (陈振茂). A Moving Coordinate Numerical Method for Analyses of Electromagneto-Mechanical Coupled Behavior of Structures in a Strong Magnetic Field Aiming at Application to Tokamak Structure[J]. Plasma Science and Technology, 2014, 16(12): 1163-1170. DOI: 10.1088/1009-0630/16/12/14
    [7]HAO Junchuan (郝俊川), SONG Yuntao (宋云涛), DU Shuangsong (杜双松), WANG Zhongwei (王忠伟), XU Yang (徐杨), FENG Changle (冯昌乐). Limit Analysis for the Mechanical Structure of the ITER Neutron Shielding Block[J]. Plasma Science and Technology, 2013, 15(4): 391-396. DOI: 10.1088/1009-0630/15/4/15
    [8]LI Weixin (李炜昕), YUAN Zhensheng (袁振圣), WU Wenjing (武文晶), CHEN Zhenmao (陈振茂). Numerical Analysis on the Magneto-Elastic Stability of Current -Carrying Conductors: Aiming at Applications for the Tokamak System[J]. Plasma Science and Technology, 2013, 15(2): 175-178. DOI: 10.1088/1009-0630/15/2/20
    [9]WANG Songke (王松可), SONG Yuntao (宋云涛), XIE Han (谢韩), LEI Mingzhun (雷明准). Thermal-Structural Coupled Analysis of ITER Torus Cryo-Pump Housing[J]. Plasma Science and Technology, 2012, 14(11): 1011-1016. DOI: 10.1088/1009-0630/14/11/10
    [10]WANG Zhen (王振), WANG Ninghui (王宁会), LI Tie (李铁), CAO Yong (曹勇). 3D Numerical Analysis of the Arc Plasma Behavior in a Submerged DC Electric Arc Furnace for the Production of Fused MgO[J]. Plasma Science and Technology, 2012, 14(4): 321-326. DOI: 10.1088/1009-0630/14/4/10

Catalog

    Article views (576) PDF downloads (616) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return