Advanced Search+
Yang LIU (刘杨), Yue TONG (佟悦), Ying WANG (王莹), Dan ZHANG (张丹), Suyu LI (李苏宇), Yuanfei JIANG (姜远飞), Anmin CHEN (陈安民), Mingxing JIN (金明星). Influence of sample temperature on the expansion dynamics of laser-induced germanium plasma[J]. Plasma Science and Technology, 2017, 19(12): 125501. DOI: 10.1088/2058-6272/aa8acc
Citation: Yang LIU (刘杨), Yue TONG (佟悦), Ying WANG (王莹), Dan ZHANG (张丹), Suyu LI (李苏宇), Yuanfei JIANG (姜远飞), Anmin CHEN (陈安民), Mingxing JIN (金明星). Influence of sample temperature on the expansion dynamics of laser-induced germanium plasma[J]. Plasma Science and Technology, 2017, 19(12): 125501. DOI: 10.1088/2058-6272/aa8acc

Influence of sample temperature on the expansion dynamics of laser-induced germanium plasma

Funds: We acknowledge the support by National Natural Science Foundation of China (Grant Nos. 11674128, 11504129, and 11474129); Jilin Province Scientific and Technological Development Program, China (Grant No. 20170101063JC); the Thirteenth Five-Year Scientific and Technological Research Project of the Education Department of Jilin Province, China (2016, No. 400).
More Information
  • Received Date: July 06, 2017
  • In this paper, we investigated the influence of sample temperature on the expansion dynamics and the optical emission spectroscopy of laser-induced plasma, and Ge was selected as the test sample. The target was heated from room temperature (22 °C) to 300 °C, and excited in atmospheric environment by using a Q-Switched Nd:YAG pulse laser with the wavelength of 1064 nm. To study the plasma expansion dynamics, we observed the plasma plume at different laser energies (5.0, 7.4 and 9.4 mJ) and different sample temperatures by using time-resolved image. We found that the heated target temperature could accelerate the expansion of plasma plume. Moreover, we also measured the effect of target temperature on the optical emission spectroscopy and signal-to-noise ratio.
  • [1]
    Botros B B and Brisson J G 2013 Int. J. Heat Mass Transfer 61 129
    [2]
    Sturm V, Peter L and Noll R 2000 Appl. Spectrosc. 54 1275
    [3]
    Sturm V et al 2004 J. Anal. At. Spectrom. 19 451
    [4]
    Yang H X et al 2016 Chin. Phys. B 25 065201
    [5]
    Barbini R et al 2002 Spectrochim. Acta B 57 1203
    [6]
    Niu L et al 2002 Appl. Spectrosc. 56 1511
    [7]
    Bai X et al 2013 Spectrochim. Acta B 87 27
    [8]
    Chen T et al 2011 Appl. Laser 31 478
    [9]
    Benedetti P A et al 2005 Spectrochim. Acta B 60 1392
    [10]
    Colao F et al 2002 Spectrochim. Acta B 57 1167
    [11]
    Sanginés R, Sobral H and Alvarez-Zauco E 2012 Spectrochim. Acta B 68 40
    [12]
    Wang Y et al 2016 Plasma Sci. Technol. 18 1192
    [13]
    Lin X M, Li H and Yao Q H 2015 Plasma Sci. Technol. 17 953
    [14]
    Bulatov V V, Krasniker R and Schechter I I 2000 Anal. Chem. 72 2987
    [15]
    Shao J et al 2017 Plasma Sci. Technol. 19 025506
    [16]
    Meng D S et al 2015 Plasma Sci. Technol. 17 632
    [17]
    Mason K J and Goldberg J M 1991 Appl. Spectrosc. 45 370
    [18]
    Rai V N et al 2003 Laser Part. Beams 21 65
    [19]
    Wu D et al 2016 Plasma Sci. Technol. 18 364
    [20]
    Liu Y, Penczak J S and Gordon R J 2010 Opt. Lett. 35 112
    [21]
    Majd A E, Arabanian A S and Massudi R 2010 Opt. Lasers Eng. 48 750
    [22]
    Lopezmoreno C et al 2005 J. Anal. At. Spectrom. 20 552
    [23]
    Su C F et al 2000 Glass Technol. 41 16
    [24]
    Scaf?di J et al 2004 Appl. Opt. 43 2786
    [25]
    Yun J I, Klenze R and Kim J I 2002 Appl. Spectrosc. 56 852
    [26]
    Lopezmoreno C, Palanco S and Laserna J J 2005 J. Anal. At. Spectrom. 20 1275
    [27]
    Wang Y et al 2017 Phys. Plasmas 24 013301
    [28]
    Tavassoli S H and Gragossian A 2009 Opt. Laser Technol. 41 481
    [29]
    Yahng J S, Nam J R and Jeoung S C 2009 Opt. Lasers Eng. 47 815
    [30]
    Harilal S S et al 2014 Appl. Phys. A 117 319
    [31]
    Pan C Y et al 2013 Spectrosc. Spectral Anal. 33 3388
    [32]
    Farid N et al 2013 J. Nucl. Mater. 438 183
    [33]
    Farid N et al 2014 J. Appl. Phys. 115 277
    [34]
    Harilal S S et al 1998 Appl. Phys. Lett. 72 167
    [35]
    Camacho J J et al 2016 Appl. Spectrosc. 70 1228
    [36]
    Yahng J S and Jeoung S C 2011 Opt. Lasers Eng. 49 1040
    [37]
    Darbani S M R et al 1990 J. Eur. Opt. Soci. Rapid Publ. 9 14058
    [38]
    Sato Y S et al 1999 Metall. Mater. Trans. A 30 2429
    [39]
    Palanco S et al 1999 J. Anal. At. Spectrom. 14 1883
    [40]
    Eschlb?ck-Fuchs S et al 2013 Spectrochim. Acta B 87 36
    [41]
    Chaleard C et al 1997 J. Anal. At. Spectrom. 12 183
    [42]
    Corsi M et al 2004 Spectrochim. Acta B 59 723
  • Related Articles

    [1]Chuang WANG (王闯), Xi CHEN (陈曦), Kai TANG (唐凯), Pengfei LI (李鹏斐). Study on the discharge mechanism and EM radiation characteristics of Trichel pulse discharge in air[J]. Plasma Science and Technology, 2019, 21(5): 55402-055402. DOI: 10.1088/2058-6272/ab03ab
    [2]Fanrong KONG (孔繁荣), Qiuyue NIE (聂秋月), Shu LIN (林澍), Zhibin WANG (王志斌), Bowen LI (李博文), Shulei ZHENG (郑树磊), Binhao JIANG (江滨浩). Studies on omnidirectional enhancement of giga-hertz radiation by sub-wavelength plasma modulation[J]. Plasma Science and Technology, 2018, 20(1): 14017-014017. DOI: 10.1088/2058-6272/aa8f3e
    [3]Xiangyang LIU (刘向阳), Siyu WANG (王司宇), Yang ZHOU (周阳), Zhiwen WU (武志文), Kan XIE (谢侃), Ningfei WANG (王宁飞). Thermal radiation properties of PTFE plasma[J]. Plasma Science and Technology, 2017, 19(6): 64012-064012. DOI: 10.1088/2058-6272/aa65e8
    [4]LI Mei (李美), ZHANG Junpeng (张俊鹏), HU Yang (胡杨), ZHANG Hantian (张含天), WU Yifei (吴益飞). Simulation of Fault Arc Based on Different Radiation Models in a Closed Tank[J]. Plasma Science and Technology, 2016, 18(5): 549-553. DOI: 10.1088/1009-0630/18/5/18
    [5]DONG Yunsong (董云松), YANG Jiamin (杨家敏), SONG Tianming (宋天明), ZHU Tuo (朱托), HUANG Chengwu (黄成武). Radiation Hydrodynamic Simulations in the Planar Scheme for the Fundamental Studies of Shock Ignition[J]. Plasma Science and Technology, 2016, 18(4): 376-381. DOI: 10.1088/1009-0630/18/4/08
    [6]SONG Tianming (宋天明), YANG Jiamin (杨家敏), ZHU Tuo (朱托), LI Zhichao (李志超), HUANG Chengwu (黄成武). Continued Study on Hohlraum Radiation Source with Approximately Constant Radiation Temperature[J]. Plasma Science and Technology, 2016, 18(4): 342-345. DOI: 10.1088/1009-0630/18/4/02
    [7]CHEN Lei (陈蕾), LIU Xiang (刘翔), LIAN Youyun (练友运), CAI Laizhong (才来中). Numerical Study of High Heat Flux Performances of Flat-Tile Divertor Mock-ups with Hypervapotron Cooling Concept[J]. Plasma Science and Technology, 2015, 17(9): 792-796. DOI: 10.1088/1009-0630/17/9/12
    [8]YU Jianyang (俞建阳), CHEN Fu (陈浮), LIU Huaping (刘华坪), SONG Yanping (宋彦萍). Numerical Study of Fluid Dynamics and Heat Transfer Induced by Plasma Discharges[J]. Plasma Science and Technology, 2015, 17(1): 41-49. DOI: 10.1088/1009-0630/17/1/09
    [9]SONG Tianming (宋天明), YANG Jiamin (杨家敏), YANG Dong (杨冬), et al.. Experimental Study of the X-Ray Radiation Source at Approximately Constant Radiation Temperature[J]. Plasma Science and Technology, 2013, 15(11): 1108-1111. DOI: 10.1088/1009-0630/15/11/06
    [10]G.Yu. YUSHKOV, K.P. SAVKIN, A.G. NIKOLAEV, E.M. OKS, A.V. VODOPYANOV, I.V. IZOTOV, D.A. MANSFELD. Formation of Multicharged Metal Ions in Vacuum Arc Plasma Heated by Gyrotron Radiation[J]. Plasma Science and Technology, 2011, 13(5): 596-599.
  • Cited by

    Periodical cited type(14)

    1. Luo, Y., Shi, Y., Zhuang, K. et al. Study on the Evolution of Physicochemical Properties of Carbon Black at Different Regeneration Stages of Diesel Particulate Filters Regenerated by Non-Thermal Plasma. Processes, 2024, 12(6): 1113. DOI:10.3390/pr12061113
    2. Shi, Y., Zhou, Y., Li, Z. et al. Effect of Temperature-controlled conditions on the decomposition of particulate matter deposited in the diesel particulate filter channel by treatment with Non-thermal plasma. Fuel, 2023. DOI:10.1016/j.fuel.2023.128547
    3. Cai, Z., Yan, F., Hu, J. et al. Temperature characteristics of silicon carbide particulate filter during drop-to-idle regeneration applied to a diesel vehicle. Fuel, 2023. DOI:10.1016/j.fuel.2022.126921
    4. Ye, J., E, J., Peng, Q. Effects of porosity setting and multilayers of diesel particulate filter on the improvement of regeneration performance. Energy, 2023. DOI:10.1016/j.energy.2022.126063
    5. Yao, D., Hu, J., Zhang, B. et al. Research on dynamic modeling and carbon load estimation of diesel particulate filter. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2023, 45(4): 12165-12180. DOI:10.1080/15567036.2023.2269126
    6. Lu, Y., Shi, Y., Cai, Y. et al. Physicochemical Properties of Particulate Matter Deposited in DPF Channels During Regeneration by Non-Thermal Plasma | [NTP 再生 DPF 孔道内沉积颗粒物的理化特性]. Neiranji Xuebao/Transactions of CSICE (Chinese Society for Internal Combustion Engines), 2023, 41(4): 307-314. DOI:10.16236/j.cnki.nrjxb.202304036
    7. Shi, Y., Zhou, Y., Li, Z. et al. Effect of temperature control conditions on DPF regeneration by nonthermal plasma. Chemosphere, 2022. DOI:10.1016/j.chemosphere.2022.134787
    8. Qiang, T.P., Peng, L.Y., De Yuan, W. et al. Effects of Catalyst Structural Parameters on the Performance of Exhaust Gas Aftertreatment System of Diesel Engines. International Journal of Automotive Technology, 2022, 23(4): 1085-1097. DOI:10.1007/s12239-022-0095-x
    9. Shi, Y., Lu, Y., Cai, Y. et al. Evolution of particulate matter deposited in the DPF channel during low-temperature regeneration by non-thermal plasma. Fuel, 2022. DOI:10.1016/j.fuel.2022.123552
    10. Dong, R., Zhang, Z., Ye, Y. et al. Review of Particle Filters for Internal Combustion Engines. Processes, 2022, 10(5): 993. DOI:10.3390/pr10050993
    11. Lu, Y., Shi, Y., Cai, Y. et al. Microcrystal Structure and C/O Element Occurrence State of Diesel PM by Non-Thermal Plasma Oxidation at Different Reaction Temperatures. International Journal of Automotive Technology, 2021, 22(6): 1711-1721. DOI:10.1007/s12239-021-0147-7
    12. Shi, Y., Lu, Y., Cai, Y. et al. Experimental study on the parameter optimization and application of a packed-bed dielectric barrier discharge reactor in diesel particulate filter regeneration. Plasma Science and Technology, 2021, 23(11): 115505. DOI:10.1088/2058-6272/ac1dfd
    13. Shi, Y., Lu, Y., Cai, Y. et al. Analysis of the microstructure and elemental occurrence state of residual ash-PM following DPF regeneration by injecting oxygen into non-thermal plasma. Plasma Science and Technology, 2021, 23(9): 095504. DOI:10.1088/2058-6272/ac1058
    14. Li, J., Lu, H., Wang, Q. et al. Enhanced removal of ultrafine particles from kerosene combustion using a dielectric barrier discharge reactor packed with porous alumina balls. Plasma Science and Technology, 2021, 23(7): 075505. DOI:10.1088/2058-6272/abffaa

    Other cited types(0)

Catalog

    Article views (251) PDF downloads (465) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return