Advanced Search+
Heng LAN (兰恒), Guosheng XU (徐国盛), Kevin TRITZ, Ning YAN (颜宁), Tonghui SHI (石同辉), Yongliang LI (李永亮), Tengfei WANG (王腾飞), Liang WANG (王亮), Jingbo CHEN (陈竞博), Yanmin DUAN (段艳敏), Yi YUAN (原毅), Youwen SUN (孙有文), Shuai GU (顾帅), Qing ZANG (臧庆), Ran CHEN (陈冉), Liang CHEN (陈良), Xingwei ZHENG (郑星炜), Shuliang CHEN (陈树亮), HuanLIU (刘欢), YangYE (叶扬), Huiqian WANG (汪惠乾), Baonian WAN (万宝年), the EAST Team. Analysis of electron temperature, impurity transport and MHD activity with multi-energy soft x-ray diagnostic in EAST tokamak[J]. Plasma Science and Technology, 2017, 19(12): 125101. DOI: 10.1088/2058-6272/aa8cbf
Citation: Heng LAN (兰恒), Guosheng XU (徐国盛), Kevin TRITZ, Ning YAN (颜宁), Tonghui SHI (石同辉), Yongliang LI (李永亮), Tengfei WANG (王腾飞), Liang WANG (王亮), Jingbo CHEN (陈竞博), Yanmin DUAN (段艳敏), Yi YUAN (原毅), Youwen SUN (孙有文), Shuai GU (顾帅), Qing ZANG (臧庆), Ran CHEN (陈冉), Liang CHEN (陈良), Xingwei ZHENG (郑星炜), Shuliang CHEN (陈树亮), HuanLIU (刘欢), YangYE (叶扬), Huiqian WANG (汪惠乾), Baonian WAN (万宝年), the EAST Team. Analysis of electron temperature, impurity transport and MHD activity with multi-energy soft x-ray diagnostic in EAST tokamak[J]. Plasma Science and Technology, 2017, 19(12): 125101. DOI: 10.1088/2058-6272/aa8cbf

Analysis of electron temperature, impurity transport and MHD activity with multi-energy soft x-ray diagnostic in EAST tokamak

Funds: This work was supported by National Magnetic Confinement Fusion Science Program of China under Contracts Nos. 2015GB101000, 2013GB106000, and 2013GB107000 as well as National Natural Science Foundation of China under Contracts Nos. 11575235, 11422546 and 11505222 and Youth Foundation of ASIPP under Grant No. Y45ETY2306.
More Information
  • Received Date: June 03, 2017
  • A new edge tangential multi-energy soft x-ray (ME-SXR) diagnostic with high temporal (≤ 0.1 ms) and spatial (~1cm) resolution has been developed for a variety of physics topics studies in the EAST tokamak plasma. The fast edge electron temperature profile (approximately from r/ a ~0.6 to the scrape-off layer) is investigated using ME-SXR diagnostic system. The data process was performed by the ideal ‘multi-foil’ technique, with no priori assumptions of plasma profiles. Reconstructed ME-SXR emissivity profiles for a variety of EAST experimental scenarios are presented here for the first time. The applications of the ME-SXR for study of the effects of resonant magnetic perturbation on edge localized modes and the first time neon radiating divertor experiment in EAST are also presented in this work. It has been found that neon impurity can suppress the 2/1 tearing mode and trigger a 3/1 MHD mode.
  • [1]
    Doyle E J et al 2007 Nucl. Fusion 47 S18
    [2]
    Li Y L et al 2015 Rev. Sci. Instrum. 86 123512
    [3]
    Wan B N et al 2015 Nucl. Fusion 55 104015
    [4]
    Wesson J 2011 Tokamaks 4th edn (New York: Oxford University Press)
    [5]
    Evans T E et al 2004 Phys. Rev. Lett. 92 235003
    [6]
    Zang Q et al 2011 Rev. Sci. Instrum. 82 063502
    [7]
    Han X et al 2014 Rev. Sci. Instrum. 85 073506
    [8]
    Tritz K et al 2012 Rev. Sci. Instrum. 83 10E109
    [9]
    Delgado-Aparicio L F et al 2011 Plasma Phys. Control. Fusion 53 035005
    [10]
    Delgado-Aparicio L F et al 2004 Rev. Sci. Instrum. 75 4020
    [11]
    Clayton D J et al 2012 Plasma Phys. Control. Fusion 54 105022
    [12]
    Delgado-Aparicio L F et al 2011 Nucl. Fusion 51 083047
    [13]
    Delgado-Aparicio L F et al 2009 Nucl. Fusion 49 085028
    [14]
    Ono M et al 2000 Nucl. Fusion 40 557
    [15]
    Li E Z et al 2010 Rev. Sci. Instrum. 81 106102
    [16]
    Savrukhin P V and Klimanov I V 2001 Rev. Sci. Instrum. 72 1668
    [17]
    Delgado-Aparicio L F et al 2007 J. Appl. Phys. 102 073304
    [18]
    Baiao D et al 2012 Rev. Sci. Instrum. 83 053501
    [19]
    Franz P et al 2006 Rev. Sci. Instrum. 77 10F318
    [20]
    Bonomo F et al 2006 Rev. Sci. Instrum. 77 10F313
    [21]
    Murari A et al 1999 Rev. Sci. Instrum. 70 581
    [22]
    Martin P, Murari A and Marrelli L 1996 Plasma Phys. Control. Fusion 38 1023
    [23]
    Kiraly J et al 1987 Nucl. Fusion 27 397
    [24]
    Delgado-Aparicio L F et al 2010 Rev. Sci. Instrum. 81 10E303
    [25]
    Delgado-Aparicio L F et al 2007 Plasma Phys. Control. Fusion 49 1245
    [26]
    Duan Y M et al 2011 Plasma Sci. Tech. 13 546
    [27]
    Reinsch C H 1967 Numer. Math. 10 177
    [28]
    Bell R E 1995 Rev. Sci. Instrum. 66 558
    [29]
    Xu L Q et al 2015 Phys. Plasmas 22 122510
    [30]
    Sun Y W et al 2015 Plasma Phys. Control. Fusion 57 045003
    [31]
    Song Y T et al 2014 IEEE Trans. Plasma Sci. 42 415
    [32]
    Sun Y W et al 2016 Phys. Rev. Lett. 117 115001
    [33]
    Wang H Q et al 2014 Nucl. Fusion 54 043014
    [34]
    Hawryluk R J 1979 Physics of Plasmas Close to Thermonuclear Conditions vol 1 (Varenna, Italy) p19
    [35]
    Behringer K 1987 Description of impurity code ‘STRAHL’ Technical Report JET-IR(87)08 JET Joint Undertaking, Abingdon, Oxfordshire
    [36]
    Dreval M et al 2011 Rev. Sci. Instrum. 82 053503
    [37]
    Von Goeler S et al 1999 Rev. Sci. Instrum. 70 599
    [38]
    Igochine V et al 2003 Nucl. Fusion 43 1801
    [39]
    Weller A, Go?rner C and Gonda D 1999 Rev. Sci. Instrum. 70 484
  • Related Articles

    [1]Chuang WANG (王闯), Xi CHEN (陈曦), Kai TANG (唐凯), Pengfei LI (李鹏斐). Study on the discharge mechanism and EM radiation characteristics of Trichel pulse discharge in air[J]. Plasma Science and Technology, 2019, 21(5): 55402-055402. DOI: 10.1088/2058-6272/ab03ab
    [2]Fanrong KONG (孔繁荣), Qiuyue NIE (聂秋月), Shu LIN (林澍), Zhibin WANG (王志斌), Bowen LI (李博文), Shulei ZHENG (郑树磊), Binhao JIANG (江滨浩). Studies on omnidirectional enhancement of giga-hertz radiation by sub-wavelength plasma modulation[J]. Plasma Science and Technology, 2018, 20(1): 14017-014017. DOI: 10.1088/2058-6272/aa8f3e
    [3]Xiangyang LIU (刘向阳), Siyu WANG (王司宇), Yang ZHOU (周阳), Zhiwen WU (武志文), Kan XIE (谢侃), Ningfei WANG (王宁飞). Thermal radiation properties of PTFE plasma[J]. Plasma Science and Technology, 2017, 19(6): 64012-064012. DOI: 10.1088/2058-6272/aa65e8
    [4]LI Mei (李美), ZHANG Junpeng (张俊鹏), HU Yang (胡杨), ZHANG Hantian (张含天), WU Yifei (吴益飞). Simulation of Fault Arc Based on Different Radiation Models in a Closed Tank[J]. Plasma Science and Technology, 2016, 18(5): 549-553. DOI: 10.1088/1009-0630/18/5/18
    [5]DONG Yunsong (董云松), YANG Jiamin (杨家敏), SONG Tianming (宋天明), ZHU Tuo (朱托), HUANG Chengwu (黄成武). Radiation Hydrodynamic Simulations in the Planar Scheme for the Fundamental Studies of Shock Ignition[J]. Plasma Science and Technology, 2016, 18(4): 376-381. DOI: 10.1088/1009-0630/18/4/08
    [6]SONG Tianming (宋天明), YANG Jiamin (杨家敏), ZHU Tuo (朱托), LI Zhichao (李志超), HUANG Chengwu (黄成武). Continued Study on Hohlraum Radiation Source with Approximately Constant Radiation Temperature[J]. Plasma Science and Technology, 2016, 18(4): 342-345. DOI: 10.1088/1009-0630/18/4/02
    [7]CHEN Lei (陈蕾), LIU Xiang (刘翔), LIAN Youyun (练友运), CAI Laizhong (才来中). Numerical Study of High Heat Flux Performances of Flat-Tile Divertor Mock-ups with Hypervapotron Cooling Concept[J]. Plasma Science and Technology, 2015, 17(9): 792-796. DOI: 10.1088/1009-0630/17/9/12
    [8]YU Jianyang (俞建阳), CHEN Fu (陈浮), LIU Huaping (刘华坪), SONG Yanping (宋彦萍). Numerical Study of Fluid Dynamics and Heat Transfer Induced by Plasma Discharges[J]. Plasma Science and Technology, 2015, 17(1): 41-49. DOI: 10.1088/1009-0630/17/1/09
    [9]SONG Tianming (宋天明), YANG Jiamin (杨家敏), YANG Dong (杨冬), et al.. Experimental Study of the X-Ray Radiation Source at Approximately Constant Radiation Temperature[J]. Plasma Science and Technology, 2013, 15(11): 1108-1111. DOI: 10.1088/1009-0630/15/11/06
    [10]G.Yu. YUSHKOV, K.P. SAVKIN, A.G. NIKOLAEV, E.M. OKS, A.V. VODOPYANOV, I.V. IZOTOV, D.A. MANSFELD. Formation of Multicharged Metal Ions in Vacuum Arc Plasma Heated by Gyrotron Radiation[J]. Plasma Science and Technology, 2011, 13(5): 596-599.
  • Cited by

    Periodical cited type(14)

    1. Luo, Y., Shi, Y., Zhuang, K. et al. Study on the Evolution of Physicochemical Properties of Carbon Black at Different Regeneration Stages of Diesel Particulate Filters Regenerated by Non-Thermal Plasma. Processes, 2024, 12(6): 1113. DOI:10.3390/pr12061113
    2. Shi, Y., Zhou, Y., Li, Z. et al. Effect of Temperature-controlled conditions on the decomposition of particulate matter deposited in the diesel particulate filter channel by treatment with Non-thermal plasma. Fuel, 2023. DOI:10.1016/j.fuel.2023.128547
    3. Cai, Z., Yan, F., Hu, J. et al. Temperature characteristics of silicon carbide particulate filter during drop-to-idle regeneration applied to a diesel vehicle. Fuel, 2023. DOI:10.1016/j.fuel.2022.126921
    4. Ye, J., E, J., Peng, Q. Effects of porosity setting and multilayers of diesel particulate filter on the improvement of regeneration performance. Energy, 2023. DOI:10.1016/j.energy.2022.126063
    5. Yao, D., Hu, J., Zhang, B. et al. Research on dynamic modeling and carbon load estimation of diesel particulate filter. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2023, 45(4): 12165-12180. DOI:10.1080/15567036.2023.2269126
    6. Lu, Y., Shi, Y., Cai, Y. et al. Physicochemical Properties of Particulate Matter Deposited in DPF Channels During Regeneration by Non-Thermal Plasma | [NTP 再生 DPF 孔道内沉积颗粒物的理化特性]. Neiranji Xuebao/Transactions of CSICE (Chinese Society for Internal Combustion Engines), 2023, 41(4): 307-314. DOI:10.16236/j.cnki.nrjxb.202304036
    7. Shi, Y., Zhou, Y., Li, Z. et al. Effect of temperature control conditions on DPF regeneration by nonthermal plasma. Chemosphere, 2022. DOI:10.1016/j.chemosphere.2022.134787
    8. Qiang, T.P., Peng, L.Y., De Yuan, W. et al. Effects of Catalyst Structural Parameters on the Performance of Exhaust Gas Aftertreatment System of Diesel Engines. International Journal of Automotive Technology, 2022, 23(4): 1085-1097. DOI:10.1007/s12239-022-0095-x
    9. Shi, Y., Lu, Y., Cai, Y. et al. Evolution of particulate matter deposited in the DPF channel during low-temperature regeneration by non-thermal plasma. Fuel, 2022. DOI:10.1016/j.fuel.2022.123552
    10. Dong, R., Zhang, Z., Ye, Y. et al. Review of Particle Filters for Internal Combustion Engines. Processes, 2022, 10(5): 993. DOI:10.3390/pr10050993
    11. Lu, Y., Shi, Y., Cai, Y. et al. Microcrystal Structure and C/O Element Occurrence State of Diesel PM by Non-Thermal Plasma Oxidation at Different Reaction Temperatures. International Journal of Automotive Technology, 2021, 22(6): 1711-1721. DOI:10.1007/s12239-021-0147-7
    12. Shi, Y., Lu, Y., Cai, Y. et al. Experimental study on the parameter optimization and application of a packed-bed dielectric barrier discharge reactor in diesel particulate filter regeneration. Plasma Science and Technology, 2021, 23(11): 115505. DOI:10.1088/2058-6272/ac1dfd
    13. Shi, Y., Lu, Y., Cai, Y. et al. Analysis of the microstructure and elemental occurrence state of residual ash-PM following DPF regeneration by injecting oxygen into non-thermal plasma. Plasma Science and Technology, 2021, 23(9): 095504. DOI:10.1088/2058-6272/ac1058
    14. Li, J., Lu, H., Wang, Q. et al. Enhanced removal of ultrafine particles from kerosene combustion using a dielectric barrier discharge reactor packed with porous alumina balls. Plasma Science and Technology, 2021, 23(7): 075505. DOI:10.1088/2058-6272/abffaa

    Other cited types(0)

Catalog

    Article views (240) PDF downloads (621) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return