Advanced Search+
Chenfan YU (余晨帆), Xin ZHOU (周鑫), Dianzheng WANG (王殿政), Neuyen VAN LINH, Wei LIU (刘伟). Study on the RF inductively coupled plasma spheroidization of refractory W and W-Ta alloy powders[J]. Plasma Science and Technology, 2018, 20(1): 14019-014019. DOI: 10.1088/2058-6272/aa8e94
Citation: Chenfan YU (余晨帆), Xin ZHOU (周鑫), Dianzheng WANG (王殿政), Neuyen VAN LINH, Wei LIU (刘伟). Study on the RF inductively coupled plasma spheroidization of refractory W and W-Ta alloy powders[J]. Plasma Science and Technology, 2018, 20(1): 14019-014019. DOI: 10.1088/2058-6272/aa8e94

Study on the RF inductively coupled plasma spheroidization of refractory W and W-Ta alloy powders

More Information
  • Spherical powders with good flowability and high stacking density are mandatory for powder bed additive manufacturing. Nevertheless, the preparation of spherical refractory tungsten and tungsten alloy powders is a formidable task. In this paper, spherical refractory metal powders processed by high-energy stir ball milling and RF inductively coupled plasma were investigated. By utilizing the technical route, pure spherical tungsten powders were prepared successfully, the flowability increased from 10.7 s/50 g to 5.5 s/50 g and apparent density increased from 6.916 g cm−3 to 11.041 g cm−3. Alloying element tantalum can reduce the tendency to microcrack
    during tungsten laser melting and rapid solidification process. Spherical W-6Ta (%wt) powders were prepared in this way, homogeneous dispersion of tantalum in a tungsten matrix occurred but a small amount of flake-like shape particles appeared after high-energy stir ball milling. The flake-like shape particles can hardly be spheroidized in subsequent RF inductively coupled plasma process, might result from the unique suspended state of flaky particles under complex electric and magnetic fields as well as plasma-particle heat exchange was different under various turbulence models. As a result, the flake-like shape particles cannot pass through
    the high-temperature area of thermal plasma torch and cannot be spheroidized properly.
  • Related Articles

    [1]Jier QIU (邱吉尔), Deping YU (余德平), Yihong LI (李裔红), Lei LI (李磊), Tong YANG (杨彤), Yuqing DONG (董宇庆). Design and characteristics of a triple-cathode cascade plasma torch for spheroidization of metallic powders[J]. Plasma Science and Technology, 2020, 22(11): 115503. DOI: 10.1088/2058-6272/aba8ed
    [2]LIU Zhijie (刘志杰), WANG Wenchun (王文春), YANG Dezheng (杨德正), WANG Sen (王森), DAI Leyang (戴乐阳). Synthesis of Nano-Size AlN Powders by Carbothermal Reduction from Plasma-Assisted Ball Milling Precursor[J]. Plasma Science and Technology, 2016, 18(7): 759-763. DOI: 10.1088/1009-0630/18/7/10
    [3]WU Ding (吴鼎), LIU Ping (刘平), SUN Liying (孙立影), HAI Ran (海然), DING Hongbin (丁洪斌). Influence of a Static Magnetic Field on Laser Induced Tungsten Plasma in Air[J]. Plasma Science and Technology, 2016, 18(4): 364-369. DOI: 10.1088/1009-0630/18/4/06
    [4]NIU Guojian(牛国鉴), LI Xiaochun(李小椿), DING Rui(丁锐), XU Qian(徐倩), LUO Guangnan(罗广南). Molecular Dynamics Simulations of Deposition and Damage on Tungsten Plasma-Facing Materials by Tungsten Dust[J]. Plasma Science and Technology, 2014, 16(8): 805-808. DOI: 10.1088/1009-0630/16/8/13
    [5]YU Xingang (余新刚), GOU Fujun (苟富均). Molecular Dynamics Study on the Diffusion Properties of Hydrogen Atoms in Bulk Tungsten[J]. Plasma Science and Technology, 2013, 15(7): 710-715. DOI: 10.1088/1009-0630/15/7/19
    [6]I. M. ULANOV, M. V. ISUPOV, A. Yu LITVINSEV, P. A. MISCHENKO. Plasma-Chemical Synthesis of Oxide Powders Using Transformer-Coupled Discharge[J]. Plasma Science and Technology, 2013, 15(4): 386-390. DOI: 10.1088/1009-0630/15/4/14
    [7]Miyuki YAJIMA, Masato YAMAGIWA, Shin KAJITA, Noriyasu OHNO, Masayuki TOKITANI, Arimichi TAKAYAM, Seiki SAITO, Atsushi M. ITO, Hiroaki NAKAMURA, Naoaki YOSHIDA. Comparison of Damages on Tungsten Surface Exposed to Noble Gas Plasmas[J]. Plasma Science and Technology, 2013, 15(3): 282-286. DOI: 10.1088/1009-0630/15/3/18
    [8]Takanori MIYAMOTO, Shuichi TAKAMURA, Hiroaki KURISHITA. Recovery of Tungsten Surface with Fiber-Form Nanostructure by Plasmas Exposures[J]. Plasma Science and Technology, 2013, 15(2): 161-165. DOI: 10.1088/1009-0630/15/2/17
    [9]Katerina ZAHARIEVA, Gheorghi VISSOKOV, Janis GRABIS, Slavcho RAKOVSKY. Plasma-Chemical Synthesis of Nanosized Powders – Nitrides, Carbides, Oxides, Carbon Nanotubes and Fullerenes[J]. Plasma Science and Technology, 2012, 14(11): 980-995. DOI: 10.1088/1009-0630/14/11/06
    [10]K. HANADA, H. ZUSHI, H. IDEI, K. NAKAMURA, M. ISHIGURO, S. TASHIMA, E. I. KALINNIKOVA, M. SAKAMOTO, M. HASEGAWA, A. FUJISAWA, A. HIGASHIJIMA, S. KAWASAKI, H. NAKASHIMA, H. LIU, O. MITARAI, T. MAEKAWA. Non-inductive start up of QUEST plasma by RF power[J]. Plasma Science and Technology, 2011, 13(3): 307-311.

Catalog

    Article views (237) PDF downloads (930) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return