Advanced Search+
LIU Zhijie (刘志杰), WANG Wenchun (王文春), YANG Dezheng (杨德正), WANG Sen (王森), DAI Leyang (戴乐阳). Synthesis of Nano-Size AlN Powders by Carbothermal Reduction from Plasma-Assisted Ball Milling Precursor[J]. Plasma Science and Technology, 2016, 18(7): 759-763. DOI: 10.1088/1009-0630/18/7/10
Citation: LIU Zhijie (刘志杰), WANG Wenchun (王文春), YANG Dezheng (杨德正), WANG Sen (王森), DAI Leyang (戴乐阳). Synthesis of Nano-Size AlN Powders by Carbothermal Reduction from Plasma-Assisted Ball Milling Precursor[J]. Plasma Science and Technology, 2016, 18(7): 759-763. DOI: 10.1088/1009-0630/18/7/10

Synthesis of Nano-Size AlN Powders by Carbothermal Reduction from Plasma-Assisted Ball Milling Precursor

Funds: supported by National Natural Science Foundation of China (No. 51177008)
More Information
  • Received Date: September 01, 2015
  • Nano-size aluminum nitride (AlN) powders have been successfully synthesized with a high efficiency method through annealing from milling assisted by discharge plasma (p-milling) alumina (Al2O3) precursors. The characterization of the p-milling Al2O3 powders and the synthesized AlN are investigated. Compared to conventional ball milling (c-milling), it can be found that the precursors by p-milling have a finer grain size with a higher specific surface area, which lead to a faster reaction efficiency and higher conversion to AlN at lower temperatures. The activation energy of p-milling Al2O3 is found to be 371.5 kJ/mol, a value that is much less than the reported value of the unmilled and the conventional milled Al2O3. Meanwhile, the synthesized AlN powders have unique features, such as an irregular lamp-like morphology with uniform particle distribution and fine average particle size. The results are attributed to the unique synergistic effect of p-milling, which is the effect of deformation, fracture, and cold welding of Al2O3 powders resulting from ball milling, that will be enhanced due to the introduction of discharge plasma.
  • 1 Hees J, Heidrich N, Pletschen W, et al. 2013, Nanotechnology,24: 025601 2 Ligatchev V, Rusli, Pan Z. 2005, Appl. Phy. Lett., 87:242903 3 Zhang Q Q, Lin W, Yang W H, et al. 2013, J. Phys.Chem. C, 117: 14158 4 Su B Z, Liu G L, Huang Z R, et al. 2015, Ceram. Int.,41: 14172 5 Li P L, Xi S Q, Zhou J G. 2009, Ceram. Int., 35: 247 6 Kulkarni N V, Karmakar S, Banerjee I, et al. 2009,Mater. Res. Bull., 44: 581 7 Liu S F, Zhang L G, An L N. 2005, J. Am. Ceram.Soc., 88: 2559 8 Calka A, Wexler D. 2002, Nature, 419: 147 9 Gusev A I, Kurlov A S. 2008, Nanotechnology, 19:265302 10 Zhu M, Dai L Y, Gu N S, et al. 2009, J. Alloys.Compd., 478: 624 11 Xu X, Nishimura T, Hirosaki N, et al. 2005, Nanotechnology,16: 1569 12 Odedairo T, Ma J, Gu Y, et al. 2014, Nanotechnology,25: 495604 13 Lefort B, Billy M. 1993, J. Am. Ceram. Soc., 76: 2295 14 Xi S Q, Liu X K, Li P L, et al. 2008, J. Alloys. Compd.,457: 452 15 Zheng X G, Tan S Y, Dong L C, et al. 2015, J. Power.Sources, 274: 286 16 Radhika Devi A, Chelvane J A, Prabhakar P K, et al.2014, J. Appl. Phys., 115: 124906
  • Related Articles

    [1]Yanze SONG, Jinjian ZHAO, Bowen ZHENG, Zihao XIE, Guishu LIANG, Qing XIE. Atmospheric pressure plasma jet deposition of TiO2 layer on alumina/epoxy to improve electrical properties[J]. Plasma Science and Technology, 2025, 27(1): 015501. DOI: 10.1088/2058-6272/ad8f0b
    [2]Haiying WEI (魏海英), Hongge GUO (郭红革), Meili ZHOU (周美丽), Lei YUE (岳蕾), Qiang CHEN (陈强). DBD plasma assisted atomic layer deposition alumina barrier layer on self-degradation polylactic acid film surface[J]. Plasma Science and Technology, 2019, 21(1): 15503-015503. DOI: 10.1088/2058-6272/aae0ee
    [3]Tao ZHU (竹涛), Ruonan WANG (王若男), Wenjing BIAN (边文璟), Yang CHEN (陈扬), Weidong JING (景伟东). Advanced oxidation technology for H2S odor gas using non-thermal plasma[J]. Plasma Science and Technology, 2018, 20(5): 54007-054007. DOI: 10.1088/2058-6272/aaae62
    [4]Sen WANG (王森), Wenchun WANG (王文春), Zhijie LIU (刘志杰), Dezheng YANG (杨德正). Comparative research of plasma-assisted milling and traditional milling in synthesizing AlN[J]. Plasma Science and Technology, 2017, 19(6): 64005-064005. DOI: 10.1088/2058-6272/aa62f8
    [5]WANG Yuling (王玉玲), GAO Chao (高超), WU Bin (武斌), HU Xu (胡旭). Simulation of Flow Around Cylinder Actuated by DBD Plasma[J]. Plasma Science and Technology, 2016, 18(7): 768-774. DOI: 10.1088/1009-0630/18/7/12
    [6]H. I. A. QAZI, M. SHARIF, S. HUSSAIN, M. A. BADAR, H. AFZAL. Spectroscopic Study of a Radio-Frequency Atmospheric Pressure Dielectric Barrier Discharge with Anodic Alumina as the Dielectric[J]. Plasma Science and Technology, 2013, 15(9): 900-903. DOI: 10.1088/1009-0630/15/9/13
    [7]TAO Xiaoping (陶小平), LI Meng (李蒙), LI Hui (李辉), DONG Hai (董海). Experimental Study of ZnO-Coated Alumina DBD in Atmospheric Pressure Air[J]. Plasma Science and Technology, 2013, 15(8): 787-790. DOI: 10.1088/1009-0630/15/8/13
    [8]Swagat S. RATH, Archana PANY, K. JAYASANKAR, Ajit K. MITRA, C. SATISH KUMAR, Partha S. MUKHERJEE, Barada K. MISHRA. Statistical Modeling Studies of Iron Recovery from Red Mud Using Thermal Plasma[J]. Plasma Science and Technology, 2013, 15(5): 459-464. DOI: 10.1088/1009-0630/15/5/13
    [9]A. RASHIDI, S. SHAHIDI, M. GHORANNEVISS, S. DALALSHARIFI, J. WIENER. Effect of Plasma on the Zeta Potential of Cotton Fabrics[J]. Plasma Science and Technology, 2013, 15(5): 455-458. DOI: 10.1088/1009-0630/15/5/12
    [10]LIU Qifa (刘启发), DING Guifu (丁桂甫), YAN Qun (严群), LIU Chang (刘畅), WANG Yan (王艳). Discharge Simulation and Fabrication Process of an Aluminum Electrode and an Alumina Layer in AC-PDP[J]. Plasma Science and Technology, 2013, 15(4): 368-375. DOI: 10.1088/1009-0630/15/4/11

Catalog

    Article views (519) PDF downloads (714) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return