Advanced Search+
Ronggang WANG (王荣刚), Qizheng JI (季启政), Tongkai ZHANG (张桐恺), Qing XIA (夏清), Yu ZHANG (张宇), Jiting OUYANG (欧阳吉庭). Discharge characteristics of a needle-to-plate electrode at a micro-scale gap[J]. Plasma Science and Technology, 2018, 20(5): 54017-054017. DOI: 10.1088/2058-6272/aaa436
Citation: Ronggang WANG (王荣刚), Qizheng JI (季启政), Tongkai ZHANG (张桐恺), Qing XIA (夏清), Yu ZHANG (张宇), Jiting OUYANG (欧阳吉庭). Discharge characteristics of a needle-to-plate electrode at a micro-scale gap[J]. Plasma Science and Technology, 2018, 20(5): 54017-054017. DOI: 10.1088/2058-6272/aaa436

Discharge characteristics of a needle-to-plate electrode at a micro-scale gap

Funds: This work was supported by National Natural Science Foundation of China (11475019) and the Electrostatic Research Foundation of Liu Shanghe Academicians and Experts Workstation, Beijing Orient Institute of Measurement and Test (BOIMTLSHJD20161002).
More Information
  • Received Date: October 19, 2017
  • To understand the discharge characteristics under a gap of micrometers, the breakdown voltage and current–voltage curve are measured experimentally in a needle-to-plate electrode at a micro-scale gap of 3–50 μm in air. The effect of the needle radius and the gas pressure on the discharge characteristics are tested. The results show that when the gap is larger than 10 μm, the relation between the breakdown voltage and the gap looks like the Paschen curve; while below 10 μm, the breakdown voltage is nearly constant in the range of the tested gap. However, at the same gap distance, the breakdown voltage is still affected by the pressure and shows a trend similar to Paschen’s law. The current–voltage characteristic in all the gaps is similar and follows the trend of a typical Townsend-to-glow discharge. A simple model is used to explain the non-normality of breakdown in the micro-gaps. The Townsend mechanism is suggested to control the breakdown process in this configuration before the gap reduces much smaller in air.
  • [1]
    Go D B and Venkattraman A 2014 J. Phys. D: Appl. Phys. 47 503001
    [2]
    Schoenbach K H and Becker K 2016 Eur. Phys. J. D 70 29
    [3]
    Hartzell A L, da Silva M G and Shea H R 2011 Root cause and failure analysis MEMS Reliability ed A L Hartzell et al (Boston, MA: Springer) p 179
    [4]
    Nakano M and Suehiro J 2017 J. Electrostat. 87 167
    [5]
    Paschen F 1889 Ann. Phys. 273 69
    [6]
    Townsend J S 1915 Electricity in Gases (Oxford: Clarendon)
    [7]
    Germer L H and Haworth F E 1948 Phys. Rev. B 73 1121
    [8]
    Germer L H 1951 J. Appl. Phys. 22 955
    [9]
    Kisliuk P 1954 J. Appl. Phys. 25 897
    [10]
    Kisliuk P 1959 J. Appl. Phys. 30 51
    [11]
    Schaffert R M 1962 IBM J. Res. Dev. 6 192
    [12]
    Boyle W S and Kisliuk P 1955 Phys. Rev. 97 255
    [13]
    Klas M et al 2012 Nucl. Instrum. Methods Phys. Res. Sect. B 279 96
    [14]
    Radmilovi?-Radjenovi? M et al 2014 Plasma Chem. Plasma Process. 34 55
    [15]
    Osmokrovic P et al 2007 Plasma Sources Sci. Technol. 16 643
    [16]
    Petrovi? ZL et al 2008 J. Phys. D: Appl. Phys. 41 194002
    [17]
    Sili E, Cambronne J P and Koliatene F 2011 IEEE Trans. Plasma Sci. 39 3173
    [18]
    Slade P G and Taylor E D 2002 IEEE Trans. Compon. Packaging Technol. 25 390
    [19]
    Radmilovi?-Radjenovi? M and Radjenovi? B 2008 Plasma Sources Sci. Technol. 17 024005
    [20]
    Radmilovi?-Radjenovi? M et al 2013 J. Phys. D: Appl. Phys. 46 015302
    [21]
    Levko D and Raja L L 2016 High Voltage 1 57
    [22]
    Kong L H et al 2017 J. Phys. D: Appl. Phys. 50 165203
    [23]
    Jiang W, Zhang Y and Bogaerts A 2014 New J. Phys. 16 113036
    [24]
    Torres J M and Dhariwal R S 1999 Microsyst. Technol. 6 6
    [25]
    Torres J M and Dhariwal R S 1999 Nanotechnology 10 102
    [26]
    Husain E and Nema R S 1982 IEEE Trans. Electr. Insul. EI-17 350
  • Related Articles

    [1]Kefeng SHANG (商克峰), Qi ZHANG (张琦), Na LU (鲁娜), Nan JIANG (姜楠), Jie LI (李杰), Yan WU (吴彦). Evaluation on a double-chamber gas-liquid phase discharge reactor for benzene degradation[J]. Plasma Science and Technology, 2019, 21(7): 75502-075502. DOI: 10.1088/2058-6272/ab0d3c
    [2]Yang CAO (曹洋), Guangzhou QU (屈广周), Tengfei LI (李腾飞), Nan JIANG (姜楠), Tiecheng WANG (王铁成). Review on reactive species in water treatment using electrical discharge plasma: formation, measurement, mechanisms and mass transfer[J]. Plasma Science and Technology, 2018, 20(10): 103001. DOI: 10.1088/2058-6272/aacff4
    [3]Sen WANG (王森), Dezheng YANG (杨德正), Feng LIU (刘峰), Wenchun WANG (王文春), Zhi FANG (方志). Spectroscopic study of bipolar nanosecond pulse gas-liquid discharge in atmospheric argon[J]. Plasma Science and Technology, 2018, 20(7): 75404-075404. DOI: 10.1088/2058-6272/aabac8
    [4]Zelong ZHANG (张泽龙), Jie SHEN (沈洁), Cheng CHENG (程诚), Zimu XU (许子牧), Weidong XIA (夏维东). Generation of reactive species in atmospheric pressure dielectric barrier discharge with liquid water[J]. Plasma Science and Technology, 2018, 20(4): 44009-044009. DOI: 10.1088/2058-6272/aaa437
    [5]Yanliang PEI (裴彦良), Liancheng ZHANG (张连成), Yifan HUANG (黄逸凡), Hui YAN (严辉), Xinlei ZHU (朱鑫磊), Zhen LIU (刘振), Keping YAN (闫克平). Discharge electrode configuration effects on the performance of a plasma sparker[J]. Plasma Science and Technology, 2017, 19(9): 95401-095401. DOI: 10.1088/2058-6272/aa7332
    [6]Feng LIU (刘峰), Bo ZHANG (张波), Zhi FANG (方志), Wenchun WANG (王文春). Generation of reactive atomic species of positive pulsed corona discharges in wetted atmospheric flows of nitrogen and oxygen[J]. Plasma Science and Technology, 2017, 19(6): 64008-064008. DOI: 10.1088/2058-6272/aa632f
    [7]QI Xiaohua (齐晓华), YANG Liang (杨亮), YAN Huijie (闫慧杰), JIN Ying (金英), HUA Yue (滑跃), REN Chunsheng (任春生). Experimental Study on Surface Dielectric Barrier Discharge Plasma Actuator with Different Encapsulated Electrode Widths for Airflow Control at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(10): 1005-1011. DOI: 10.1088/1009-0630/18/10/07
    [8]WANG Yanhui (王艳辉), YE Huanhuan (叶换换), ZHANG Jiao (张佼), WANG Qi (王奇), ZHANG Jie (张杰), WANG Dezhen (王德真). Numerical Study of Pulsed Dielectric Barrier Discharge at Atmospheric Pressure Under the Needle-Plate Electrode Configuration[J]. Plasma Science and Technology, 2016, 18(5): 478-484. DOI: 10.1088/1009-0630/18/5/06
    [9]XIN Qing (辛青), ZHANG Yi (张轶), WU Kaibin (巫开斌). Degradation of Microcystin-LR by Gas-Liquid Interfacial Discharge Plasma[J]. Plasma Science and Technology, 2013, 15(12): 1221-1225. DOI: 10.1088/1009-0630/15/12/11
    [10]GONG Jianying (巩建英), ZHANG Xingwang (张兴旺), WANG Xiaoping (王小平), LEI Lecheng (雷乐成). Oxidation of S(IV) in Seawater by Pulsed High Voltage Discharge Plasma with TiO 2 /Ti Electrode as Catalyst[J]. Plasma Science and Technology, 2013, 15(12): 1209-1214. DOI: 10.1088/1009-0630/15/12/09

Catalog

    Article views (313) PDF downloads (572) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return