Advanced Search+
Chundong HU (胡纯栋), Yongjian XU (许永建), Yuanlai XIE (谢远来), Yahong XIE (谢亚红), Lizhen LIANG (梁立振), Caichao JIANG (蒋才超), Sheng LIU (刘胜), Jianglong WEI (韦江龙), Peng SHENG (盛鹏), Zhimin LIU (刘智民), Ling TAO (陶玲), the NBI Team. Thermal analysis of EAST neutral beam injectors for long-pulse beam operation[J]. Plasma Science and Technology, 2018, 20(4): 45602-045602. DOI: 10.1088/2058-6272/aaa4f0
Citation: Chundong HU (胡纯栋), Yongjian XU (许永建), Yuanlai XIE (谢远来), Yahong XIE (谢亚红), Lizhen LIANG (梁立振), Caichao JIANG (蒋才超), Sheng LIU (刘胜), Jianglong WEI (韦江龙), Peng SHENG (盛鹏), Zhimin LIU (刘智民), Ling TAO (陶玲), the NBI Team. Thermal analysis of EAST neutral beam injectors for long-pulse beam operation[J]. Plasma Science and Technology, 2018, 20(4): 45602-045602. DOI: 10.1088/2058-6272/aaa4f0

Thermal analysis of EAST neutral beam injectors for long-pulse beam operation

More Information
  • Received Date: October 12, 2017
  • Two sets of neutral beam injectors (NBI-1 and NBI-2) have been mounted on the EAST tokamak since 2014. NBI-1 and NBI-2 are co-direction and counter-direction, respectively. As with in-depth physics and engineering study of EAST, the ability of long pulse beam injection should be required in the NBI system. For NBIs, the most important and difficult thing that should be overcome is heat removal capacity of heat loaded components for long-pulse beam extraction. In this article, the thermal state of the components of EAST NBI is investigated using water flow calorimetry and thermocouple temperatures. Results show that (1) operation parameters have an obvious influence on the heat deposited on the inner components of the beamline, (2) a suitable operation parameter can decrease the heat loading effectively and obtain longer beam pulse length, and (3) under the cooling water pressure of 0.25 MPa, the predicted maximum beam pulse length will be up to 260 s with 50 keV beam energy by a duty factor of 0.5. The results present that, in this regard, the EAST NBI-1 system has the ability of long-pulse beam injection.
  • [1]
    Hu C D and NBI Team 2012 Plasma Sci. Technol. 14 567
    [2]
    Chang D H et al 2011 Fusion Eng. Des. 86 244
    [3]
    Hu C D et al 2011 Plasma Sci. Technol. 13 541
    [4]
    Hu C D and NBI Team 2012 Plasma Sci. Technol. 14 871
    [5]
    Xie Y H et al 2014 Rev. Sci. Instrum. 85 02B315
    [6]
    Hu C D and NBI Team 2013 Plasma Sci. Technol. 15 201
    [7]
    Wan B N et al 2009 Nucl. Fusion 49 104011
    [8]
    Li J G et al 2011 Nucl. Fusion 51 094007
    [9]
    Wan B N et al 2013 Nucl. Fusion 53 104006
    [10]
    Gong X Z et al 2017 Plasma Sci. Technol. 19 032001
    [11]
    Xu Y J et al 2016 Rev. Sci. Instrum. 87 02B934
    [12]
    Yu L et al 2015 J. Fusion Energ. 34 245
    [13]
    Yu L et al 2013 J. Fusion Energ. 32 547
    [14]
    Xu Y J et al 2013 Chin. Phys. Lett. 30 032901
    [15]
    Li X et al 2016 Plasma Sci. Technol. 18 1215
  • Related Articles

    [1]Ying WANG (王莹), Anmin CHEN (陈安民), Qiuyun WANG (王秋云), Dan ZHANG (张丹), Laizhi SUI (隋来志), Suyu LI (李苏宇), Yuanfei JIANG (姜远飞), Mingxing JIN (金明星). Enhancement of optical emission generated from femtosecond double-pulse laser-induced glass plasma at different sample temperatures in air[J]. Plasma Science and Technology, 2019, 21(3): 34013-034013. DOI: 10.1088/2058-6272/aaefa1
    [2]Xiang HE (何湘), Chong LIU (刘冲), Yachun ZHANG (张亚春), Jianping CHEN (陈建平), Yudong CHEN (陈玉东), Xiaojun ZENG (曾小军), Bingyan CHEN (陈秉岩), Jiaxin PANG (庞佳鑫), Yibing WANG (王一兵). Diagnostic of capacitively coupled radio frequency plasma from electrical discharge characteristics: comparison with optical emission spectroscopy and fluid model simulation[J]. Plasma Science and Technology, 2018, 20(2): 24005-024005. DOI: 10.1088/2058-6272/aa9a31
    [3]Yong WANG (王勇), Cong LI (李聪), Jielin SHI (石劼霖), Xingwei WU (吴兴伟), Hongbin DING (丁洪斌). Measurement of electron density and electron temperature of a cascaded arc plasma using laser Thomson scattering compared to an optical emission spectroscopic approach[J]. Plasma Science and Technology, 2017, 19(11): 115403. DOI: 10.1088/2058-6272/aa861d
    [4]LIANG Tian (梁田), ZHENG Zhiyuan (郑志远), ZHANG Siqi (张思齐), TANG Weichong (汤伟冲), XIAO Ke (肖珂), LIANG Wenfei (梁文飞), GAO Lu (高禄), GAO Hua (高华). Influence of Surface Radius Curvature on Laser Plasma Propulsion with Ablation Water Propellant[J]. Plasma Science and Technology, 2016, 18(10): 1034-1037. DOI: 10.1088/1009-0630/18/10/11
    [5]LAN Hui (兰慧), WANG Xinbing (王新兵), ZUO Duluo (左都罗). Time-Resolved Optical Emission Spectroscopy Diagnosis of CO2 Laser-Produced SnO2 Plasma[J]. Plasma Science and Technology, 2016, 18(9): 902-906. DOI: 10.1088/1009-0630/18/9/05
    [6]ZHENG Zhiyuan(郑志远), GAO Hua(高华), GAO Lu(高禄), XING Jie(邢杰). Experimental Investigation of the Properties of an Acoustic Wave Induced by Laser Ablation of a Solid Target in Water-Confined Plasma Propulsion[J]. Plasma Science and Technology, 2014, 16(11): 1032-1035. DOI: 10.1088/1009-0630/16/11/06
    [7]ZHENG Zhiyuan(郑志远), GAO Hua(高华), FAN Zhenjun(樊振军), XING Jie(邢杰). Characteristics of Droplets Ejected from Liquid Propellants Ablated by Laser Pulses in Laser Plasma Propulsion[J]. Plasma Science and Technology, 2014, 16(3): 251-254. DOI: 10.1088/1009-0630/16/3/14
    [8]Panagiotis SVARNAS. Vibrational Temperature of Excited Nitrogen Molecules Detected in a 13.56 MHz Electrical Discharge by Sheath-Side Optical Emission Spectroscopy[J]. Plasma Science and Technology, 2013, 15(9): 891-895. DOI: 10.1088/1009-0630/15/9/11
    [9]V. SIVAKUMARAN, AJAI KUMAR, R. K. SINGH, V. PRAHLAD, H. C. JOSHI. Atomic Processes in Emission Characteristics of a Lithium Plasma Plume Formed by Double-Pulse Laser Ablation[J]. Plasma Science and Technology, 2013, 15(3): 204-208. DOI: 10.1088/1009-0630/15/3/02
    [10]N. U. REHMAN, F. U. KHAN, S. NASEER, G. MURTAZA, S. S. HUSSAIN, I. AHMAD, M. ZAKAULLAH. Trace-Rare-Gas Optical Emission Spectroscopy of Nitrogen Plasma Generated at a Frequency of 13.56 MHz[J]. Plasma Science and Technology, 2011, 13(2): 208-212.
  • Cited by

    Periodical cited type(11)

    1. Zhang, M., Liao, M., Bu, L. et al. Optimization and analysis of surface flashover triggered vacuum switch conduction delay time characteristics. AIP Advances, 2025, 15(1): 015328. DOI:10.1063/5.0249811
    2. Abbas, I.K., Aadim, K.A. Investigation of the Impacts of Laser Energy on Calcium Plasma and Calculated Plasma Parameters by using the O. E. S. Technique. AIP Conference Proceedings, 2024, 2885(1): 060003. DOI:10.1063/5.0181645
    3. Robledo-Martinez, A., Sobral, H., Garcia-Villarreal, L.A. Dynamics of the plasma induced by laser on a cryogenically cooled aluminum target for application in space propulsion. Physics of Plasmas, 2024, 31(1): 013501. DOI:10.1063/5.0174305
    4. Wang, Y.-F., Zhu, X.-M., Jia, J.-W. et al. Development of a circumferential-scanning tomography system for the measurement of 3-D plume distribution of the spacecraft plasma thrusters. Measurement: Journal of the International Measurement Confederation, 2023. DOI:10.1016/j.measurement.2023.112966
    5. Wu, J.-J., Ou, Y., Zhang, Y. et al. Review and Prospect of Laser-Electric Hybrid Thruster | [激光-电磁复合推力器研究现状与展望]. Tuijin Jishu/Journal of Propulsion Technology, 2023, 44(6): 2208069. DOI:10.13675/j.cnki.tjjs.2208069
    6. Ou, Y., Wu, J., Zhang, Y. et al. A predictive model for macro-performances applied to laser-assisted pulsed plasma thrusters. Physics of Plasmas, 2022, 29(1): 013506. DOI:10.1063/5.0073678
    7. Robledo-Martinez, A., Garcia-Villarreal, A., Sobral, H. et al. Laser ablation of a metallic target under cryogenic conditions. Applied Physics A: Materials Science and Processing, 2021, 127(12): 927. DOI:10.1007/s00339-021-05061-z
    8. Zhao, Y., Tan, S., Wu, J. et al. The ablation characteristics of laser-assisted pulsed plasma thruster with metal propellant. Plasma Science and Technology, 2021, 23(10): 104007. DOI:10.1088/2058-6272/ac10ff
    9. Duan, B., Zhang, H., Hua, Z. et al. Impulse and electric charge characteristics of chemical propellant under pulsed laser irradiation. Vacuum, 2021. DOI:10.1016/j.vacuum.2021.110419
    10. Zhang, R., Xi, W., Huang, Q. Influence of Different Energy Supply Methods on Performance of Ablative Pulsed Plasma Thrusters. Frontiers in Energy Research, 2021. DOI:10.3389/fenrg.2021.752017
    11. Zhang, Z., Zhang, Z., Ling, W.Y.L. et al. Time-resolved investigation of the asymmetric plasma plume in a pulsed plasma thruster. Journal of Physics D: Applied Physics, 2020, 53(47): 475201. DOI:10.1088/1361-6463/abab2a

    Other cited types(0)

Catalog

    Article views (214) PDF downloads (512) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return