Advanced Search+
Su ZHAO (赵谡), Yunkun DENG (邓云坤), Yuhao GAO (高于皓), Dengming XIAO (肖登明). Calculation and characteristic analysis on synergistic effect of CF3I gas mixtures[J]. Plasma Science and Technology, 2018, 20(6): 65401-065401. DOI: 10.1088/2058-6272/aaaadc
Citation: Su ZHAO (赵谡), Yunkun DENG (邓云坤), Yuhao GAO (高于皓), Dengming XIAO (肖登明). Calculation and characteristic analysis on synergistic effect of CF3I gas mixtures[J]. Plasma Science and Technology, 2018, 20(6): 65401-065401. DOI: 10.1088/2058-6272/aaaadc

Calculation and characteristic analysis on synergistic effect of CF3I gas mixtures

Funds: This work is supported by National Natural Science Founfidation of China (Grant No. 51337006), China Postdoctoral Science Foundation (2016M602728) and the Science and Technology Project of SGCC ‘Research on SF6 Alternative Gas for Insulation and Arc Quenching Application’.
More Information
  • Received Date: November 21, 2017
  • CF3I is a potential SF6 alternative gas. In order to study the insulation properties and synergistic effects of CF3I/N2 and CF3I/CO2 gas mixtures, two-term approximate Boltzmann equations were used to obtain the ionization coefficient α, attachment coefficient η and the critical equivalent electrical field strength (E/N)cr. The results show that the (E/N)cr of CF3I gas at 300 K is 1.2 times that of SF6 gas, and CF3I/N2 and CF3I/CO2 gas mixtures both have synergistic effect occurred. The synergistic effect coefficient of CF3I/CO2 gas mixture was higher than that of CF3I/N2 gas mixture. But the (E/N)cr of CF3I/N2 is higher than that of CF3I/CO2 under the same conditions. When the content of CF3I exceeds 20%, the (E/N)cr of CF3I/N2 and CF3I/CO2 gas mixture increase linearly with the increasing of CF3I gas content. The breakdown voltage of CF3I/N2 gas mixture is also higher than that of CF3I/CO2 gas mixture in slightly non-uniform electrical field under power frequency voltage, but the synergistic effect coefficients of the two gas mixtures are basically the same.
  • [1]
    XiaoDMandYan JD2017 High Voltage Eng. 43 699 (in Chinese)
    [2]
    Jiao J T et al 2016 Plasma Sci. Technol. 18 554
    [3]
    Zhao X L et al 2017 IEEE Trans. Dielectr. Electr. Insul. 24 869
    [4]
    Chen L J et al 2017 IEEE Trans. Power Deliv. 32 1089
    [5]
    DengYKandXiao DM2014 Japan. J. Appl. Phys. 53 096201
    [6]
    Zhao S et al 2017 Proc. CSEE 37 3636 (in Chinese)
    [7]
    Xiao D M 2016 High Voltage Eng. 42 1035 (in Chinese)
    [8]
    Deng Y K, Xiao D M and Chen J 2013 High Voltage Eng. 39 2288 (in Chinese)
    [9]
    Zhang X X et al 2013 Trans. China Electrotech. Soc. 28 36 (in Chinese)
    [10]
    Toyota H, Matsuoka S and Hidaka K 2006 Electr. Eng. Japan 157 1
    [11]
    Katagiri H et al 2008 IEEE Trans. Dielectr. Electr. Insul. 15 1424
    [12]
    De Urquijo J et al 2007 J. Phys. D: Appl. Phys. 40 2205
    [13]
    Li X W et al 2013 J. Phys. D: Appl. Phys. 46 345203
    [14]
    Xu L L et al 2017 High Voltage Eng. 43 721
    [15]
    Qiu Y C 1994 GIS Device and Its Insulation Technology (Beijing: Water Conservancy and Power Press) pp 96–100
    [16]
    DengYKandXiao DM2013 Chin. Phys. B 22 035101
    [17]
    Hasegawa H et al 2009 Appl. Phys. Lett. 95 101504
    [18]
    Pancheshnyi S et al 2012 Chem. Phys. 398 148
    [19]
    Li B, Deng Y K and Xiao D M 2015 High Voltage Eng. 41 4150 (in Chinese)
  • Related Articles

    [1]Fangyuan LIU (刘方圆), Deping YU (余德平), Cheng LV (吕程), Yazhou DUAN (段亚洲), Yanjie ZHONG (钟严杰), Jin YAO (姚进). Experimental study on the jet characteristics of a steam plasma torch[J]. Plasma Science and Technology, 2018, 20(12): 125401. DOI: 10.1088/2058-6272/aad9f1
    [2]Guanlei DENG (邓官垒), Qikang JIN (金杞糠), Shengyong YIN (殷胜勇), Chao ZHENG (郑超), Zhen LIU (刘振), Keping YAN (闫克平). Experimental study on bacteria disinfection using a pulsed cold plasma jet with helium/ oxygen mixed gas[J]. Plasma Science and Technology, 2018, 20(11): 115503. DOI: 10.1088/2058-6272/aacaee
    [3]Fanrong KONG (孔繁荣), Qiuyue NIE (聂秋月), Guangye XU (徐广野), Xiaoning ZHANG (张晓宁), Shu LIN (林澍), Binhao JIANG (江滨浩). Experimental and numerical studies on the receiving gain enhancement modulated by a sub-wavelength plasma layer[J]. Plasma Science and Technology, 2018, 20(9): 95504-095504. DOI: 10.1088/2058-6272/aac430
    [4]Kai ZHAO (赵凯), Feng LI (李锋), Baigang SUN (孙佰刚), Hongyu YANG (杨宏宇), Tao ZHOU (周韬), Ruizhi SUN (孙睿智). Numerical and experimental investigation of plasma plume deflection with MHD flow control[J]. Plasma Science and Technology, 2018, 20(6): 65511-065511. DOI: 10.1088/2058-6272/aab2a4
    [5]Haixin HU (胡海欣), Feng HE (何锋), Ping ZHU (朱平), Jiting OUYANG (欧阳吉庭). Numerical study of the influence of dielectric tube on propagation of atmospheric pressure plasma jet based on coplanar dielectric barrier discharge[J]. Plasma Science and Technology, 2018, 20(5): 54010-054010. DOI: 10.1088/2058-6272/aaaad9
    [6]HAN Le (韩乐), CHANG Haiping (常海萍), ZHANG Jingyang (张镜洋), XU Tiejun (许铁军). Numerical Simulation on Subcooled Boiling Heat Transfer Characteristics of Water-Cooled W/Cu Divertors[J]. Plasma Science and Technology, 2015, 17(4): 347-352. DOI: 10.1088/1009-0630/17/4/16
    [7]HAN Le(韩乐), CHANG Haiping(常海萍), ZHANG Jingyang(张镜洋), LIU Nan(刘楠), XU Tiejun(许铁军). The Effects of Nonuniform Thermal Boundary Condition on Thermal Stress Calculation of Water-Cooled W/Cu Divertor[J]. Plasma Science and Technology, 2014, 16(10): 988-994. DOI: 10.1088/1009-0630/16/10/16
    [8]DENG Yongfeng(邓永锋), TAN Yonghua(谭永华), HAN Xianwei(韩先伟). Numerical and Experimental Investigation of Electron Beam Air Plasma Properties at Moderate Pressure[J]. Plasma Science and Technology, 2014, 16(1): 6-11. DOI: 10.1088/1009-0630/16/1/02
    [9]JIN Di (金迪), LI Yinghong (李应红), JIA Min (贾敏), SONG Huimin (宋慧敏), et al.. Experimental Characterization of the Plasma Synthetic Jet Actuator[J]. Plasma Science and Technology, 2013, 15(10): 1034-1040. DOI: 10.1088/1009-0630/15/10/14
    [10]LIN Zhihong (林志宏), S. ETHIER, T. S. HAHM, W. M. TANG. Verification of Gyrokinetic Particle Simulation of Device Size Scaling of Turbulent Transport[J]. Plasma Science and Technology, 2012, 14(12): 1125-1126. DOI: 10.1088/1009-0630/14/12/17
  • Cited by

    Periodical cited type(6)

    1. Zhang, Z., Wen, H.F., Li, L. et al. Imaging the distribution of a surface plasmon induced electromagnetic field at the nanoscale with MFSM. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 2024, 63(10): 106001. DOI:10.35848/1347-4065/ad82c4
    2. Wei, G., Nie, Q., Zhang, Z. et al. Numerical investigation of a plasma-dielectric-plasma waveguide with tunable Fano resonances. Optik, 2024. DOI:10.1016/j.ijleo.2024.171819
    3. Gao, M., Wang, B., Guo, B. Propagation of surface magnetoplasmon polaritons in a symmetric waveguide with two-dimensional electron gas. Plasma Science and Technology, 2023, 25(9): 095001. DOI:10.1088/2058-6272/acd09e
    4. Pei, R., Liu, D., Zhang, Q. et al. Fluctuation of Plasmonically Induced Transparency Peaks within Multi-Rectangle Resonators. Sensors, 2023, 23(1): 226. DOI:10.3390/s23010226
    5. Wang, B., Guo, B. Chiral Berry plasmon dispersion of the two-dimensional electron gas based on a quantum hydrodynamic model. Physics of Plasmas, 2022, 29(8): 082101. DOI:10.1063/5.0097873
    6. Gric, T., Rafailov, E. Absorption enhancement in hyperbolic metamaterials by means of magnetic plasma. Applied Sciences (Switzerland), 2021, 11(11): 4720. DOI:10.3390/app11114720

    Other cited types(0)

Catalog

    Article views (203) PDF downloads (541) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return