Advanced Search+
Su ZHAO (赵谡), Yunkun DENG (邓云坤), Yuhao GAO (高于皓), Dengming XIAO (肖登明). Calculation and characteristic analysis on synergistic effect of CF3I gas mixtures[J]. Plasma Science and Technology, 2018, 20(6): 65401-065401. DOI: 10.1088/2058-6272/aaaadc
Citation: Su ZHAO (赵谡), Yunkun DENG (邓云坤), Yuhao GAO (高于皓), Dengming XIAO (肖登明). Calculation and characteristic analysis on synergistic effect of CF3I gas mixtures[J]. Plasma Science and Technology, 2018, 20(6): 65401-065401. DOI: 10.1088/2058-6272/aaaadc

Calculation and characteristic analysis on synergistic effect of CF3I gas mixtures

  • CF3I is a potential SF6 alternative gas. In order to study the insulation properties and synergistic effects of CF3I/N2 and CF3I/CO2 gas mixtures, two-term approximate Boltzmann equations were used to obtain the ionization coefficient α, attachment coefficient η and the critical equivalent electrical field strength (E/N)cr. The results show that the (E/N)cr of CF3I gas at 300 K is 1.2 times that of SF6 gas, and CF3I/N2 and CF3I/CO2 gas mixtures both have synergistic effect occurred. The synergistic effect coefficient of CF3I/CO2 gas mixture was higher than that of CF3I/N2 gas mixture. But the (E/N)cr of CF3I/N2 is higher than that of CF3I/CO2 under the same conditions. When the content of CF3I exceeds 20%, the (E/N)cr of CF3I/N2 and CF3I/CO2 gas mixture increase linearly with the increasing of CF3I gas content. The breakdown voltage of CF3I/N2 gas mixture is also higher than that of CF3I/CO2 gas mixture in slightly non-uniform electrical field under power frequency voltage, but the synergistic effect coefficients of the two gas mixtures are basically the same.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return