Advanced Search+
Yangmin GUO (郭阳敏), Yun TANG (唐云), Yu DU (杜宇), Shisong TANG (唐仕松), Lianbo GUO (郭连波), Xiangyou LI (李祥友), Yongfeng LU (陆永枫), Xiaoyan ZENG (曾晓雁). Cluster analysis of polymers using laser-induced breakdown spectroscopy with K-means[J]. Plasma Science and Technology, 2018, 20(6): 65505-065505. DOI: 10.1088/2058-6272/aaaade
Citation: Yangmin GUO (郭阳敏), Yun TANG (唐云), Yu DU (杜宇), Shisong TANG (唐仕松), Lianbo GUO (郭连波), Xiangyou LI (李祥友), Yongfeng LU (陆永枫), Xiaoyan ZENG (曾晓雁). Cluster analysis of polymers using laser-induced breakdown spectroscopy with K-means[J]. Plasma Science and Technology, 2018, 20(6): 65505-065505. DOI: 10.1088/2058-6272/aaaade

Cluster analysis of polymers using laser-induced breakdown spectroscopy with K-means

Funds: This work is supported by National Natural Science Foundation of China (Nos. 61575073 and 51429501).
More Information
  • Received Date: December 17, 2017
  • Laser-induced breakdown spectroscopy (LIBS) combined with K-means algorithm was employed to automatically differentiate industrial polymers under atmospheric conditions. The unsupervised learning algorithm K-means were utilized for the clustering of LIBS dataset measured from twenty kinds of industrial polymers. To prevent the interference from metallic elements, three atomic emission lines (C I 247.86 nm, H I 656.3 nm, and O I 777.3 nm) and one molecular line C–N (0, 0) 388.3 nm were used. The cluster analysis results were obtained through an iterative process. The Davies–Bouldin index was employed to determine the initial number of clusters. The average relative standard deviation values of characteristic spectral lines were used as the iterative criterion. With the proposed approach, the classification accuracy for twenty kinds of industrial polymers achieved 99.6%. The results demonstrated that this approach has great potential for industrial polymers recycling by LIBS.
  • [1]
    Geyer R, Jambeck J R and Law K L 2017 Sci. Adv. 3 e1700782
    [2]
    Bhadra J, Al-Thani N and Abdulkareem A 2017 Recycling of polymer-polymer composites Micro and Nano Fibrillar Composites (MFCs and NFCs) from Polymer Blends ed R K Mishra et al (Amsterdam: Elsevier)
    [3]
    Feldhoff R et al 1997 Appl. Spectrosc. 51 362
    [4]
    Boeykens S and Vázquez C 2004 Spectrochim. Acta B 59 1189
    [5]
    Allen V, Kalivas J H and Rodriguez R G 1999 Appl. Spectrosc. 53 672
    [6]
    Dinger P 1992 BioCycle 33 80
    [7]
    Fortes F J 2013 Anal. Chem. 85 640
    [8]
    Hahn D W and Omenetto N 2012 Appl. Spectrosc. 66 347
    [9]
    Wang Z et al 2014 Front. Phys. 9 419
    [10]
    Knight A K et al 2000 Appl. Spectrosc. 54 331
    [11]
    Gaudiuso R et al 2010 Sensors 10 7434
    [12]
    Wang Q Q et al 2012 Front. Phys. 7 701
    [13]
    Cheng X et al 2017 Appl. Opt. 56 9144
    [14]
    Boueri M et al 2011 Appl. Spectrosc. 65 307
    [15]
    Anzano J et al 2008 Polym. Test. 27 705
    [16]
    Banaee M and Tavassoli S H 2012 Polym. Test. 31 759
    [17]
    Yu Y et al 2014 Opt. Express 22 3895
    [18]
    He L A et al 2016 Plasma Sci. Technol. 18 647
    [19]
    Costa V C et al 2017 Polym. Test. 59 390
    [20]
    Maulik U and Bandyopadhyay S 2002 IEEE Trans. Pattern Anal. Mach. Intell. 24 1650
    [21]
    Baudelet M et al 2007 Spectrochim. Acta B 62 1329
    [22]
    Multari R A, Cremers D A and Bostian M L 2012 Appl. Opt. 51 B57
    [23]
    Luo Q et al 2006 Appl. Phys. B 82 105
    [24]
    Hartigan J A and Wong M A 1979 Appl. Stat. 28 100
    [25]
    Chaves R et al 2009 Neurosci. Lett. 461 293
  • Related Articles

    [1]Luyun JIANG, Yutong CHEN, Chentao MAO, Jianhui HAN, Anmin CHEN, Jifei YE. Performance optimization of ammonium dinitramide-based liquid propellant in pulsed laser ablation micro-propulsion using LIBS[J]. Plasma Science and Technology, 2025, 27(1): 015503. DOI: 10.1088/2058-6272/ad92f8
    [2]Yihan LYU, Weiran SONG, Zongyu HOU, Zhe WANG. Incorporating empirical knowledge into data-driven variable selection for quantitative analysis of coal ash content by laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2024, 26(7): 075509. DOI: 10.1088/2058-6272/ad370c
    [3]Jiajia HOU (侯佳佳), Lei ZHANG (张雷), Yang ZHAO (赵洋), Zhe WANG (王哲), Yong ZHANG (张勇), Weiguang MA (马维光), Lei DONG (董磊), Wangbao YIN (尹王保), Liantuan XIAO (肖连团), Suotang JIA (贾锁堂). Mechanisms and efficient elimination approaches of self-absorption in LIBS[J]. Plasma Science and Technology, 2019, 21(3): 34016-034016. DOI: 10.1088/2058-6272/aaf875
    [4]Xiaomeng LI (李晓萌), Huili LU (陆慧丽), Jianhong YANG (阳建宏), Fu CHANG (常福). Semi-supervised LIBS quantitative analysis method based on co-training regression model with selection of effective unlabeled samples[J]. Plasma Science and Technology, 2019, 21(3): 34015-034015. DOI: 10.1088/2058-6272/aaee14
    [5]Minchao CUI (崔敏超), Yoshihiro DEGUCHI (出口祥啓), Zhenzhen WANG (王珍珍), Seiya TANAKA (田中诚也), Min-Gyu JEON (全敏奎), Yuki FUJITA (藤田裕贵), Shengdun ZHAO (赵升吨). Remote open-path laser-induced breakdown spectroscopy for the analysis of manganese in steel samples at high temperature[J]. Plasma Science and Technology, 2019, 21(3): 34007-034007. DOI: 10.1088/2058-6272/aaeba7
    [6]Shuxia ZHAO (赵书霞), Lei ZHANG (张雷), Jiajia HOU (侯佳佳), Yang ZHAO (赵洋), Wangbao YIN (尹王保), Weiguang MA (马维光), Lei DONG (董磊), Liantuan XIAO (肖连团), Suotang JIA (贾锁堂). Accurate quantitative CF-LIBS analysis of both major and minor elements in alloys via iterative correction of plasma temperature and spectral intensity[J]. Plasma Science and Technology, 2018, 20(3): 35502-035502. DOI: 10.1088/2058-6272/aa97ce
    [7]Dongxu CHEN (陈东旭), Yilun ZHU (朱逸伦), Zhenling ZHAO (赵朕领), Chengming QU (渠承明), Wang LIAO (廖望), Jinlin XIE (谢锦林), Wandong LIU (刘万东). An intelligent remote control system for ECEI on EAST[J]. Plasma Science and Technology, 2017, 19(8): 84005-084005. DOI: 10.1088/2058-6272/aa6e4a
    [8]ZHONG Shilei (钟石磊), ZHENG Ronger (郑荣儿), LU Yuan (卢渊), CHENG Kai (程凯), XIU Junshan (修俊山). Ultrasonic Nebulizer Assisted LIBS: a Promising Metal Elements Detection Method for Aqueous Sample Analysis[J]. Plasma Science and Technology, 2015, 17(11): 979-984. DOI: 10.1088/1009-0630/17/11/17
    [9]LIU Xiaona (刘晓娜), HUANG Jianmei (黄建梅), WU Zhisheng (吴志生), ZHANG Qiao (张乔), SHI Xinyuan (史新元), ZHAO Na (赵娜), JIA Shuaiyun (贾帅芸), QIAO Yanjiang (乔延江). Microanalysis of Multi-Element in Juncus effusus L. by LIBS Technique[J]. Plasma Science and Technology, 2015, 17(11): 904-908. DOI: 10.1088/1009-0630/17/11/02
    [10]WEN Guanhong(温冠宏), SUN Duixiong(孙对兄), SU Maogen(苏茂根), DONG Chenzhong(董晨钟). LIBS Detection of Heavy Metal Elements in Liquid Solutions by Using Wood Pellet as Sample Matrix[J]. Plasma Science and Technology, 2014, 16(6): 598-601. DOI: 10.1088/1009-0630/16/6/11
  • Cited by

    Periodical cited type(5)

    1. Niu, Y., Bao, W., Liu, D. et al. Analysis of enthalpy and energy conversion efficiency in high-power inductively coupled plasma. Vacuum, 2024. DOI:10.1016/j.vacuum.2024.113220
    2. Zhou, X., Chen, X., Ye, T. et al. Quasi-direct numerical simulations of the flow characteristics of a thermal plasma reactor with counterflow jet. Plasma Science and Technology, 2023, 25(7): 075403. DOI:10.1088/2058-6272/acb9d8
    3. Niu, Y., Bao, W., Liu, D. et al. Thermodynamic Parameters and Energy Transfer Analysis of High Enthalpy Inductively Coupled Plasma. 2023. DOI:10.1109/CSRSWTC60855.2023.10427285
    4. Zhou, X., Chen, X., Ye, T. et al. Numerical study of the effect of coflow argon jet on a laminar argon thermal plasma jet. Plasma Science and Technology, 2022, 24(5): 055409. DOI:10.1088/2058-6272/ac52eb
    5. Bykov, N.Y., Obraztsov, N.V., Hvatov, A.A. et al. Hybrid modeling of gas-dynamic processes in AC plasma torches. Materials Physics and Mechanics, 2022, 50(2): 287-303. DOI:10.18149/MPM.5022022_9

    Other cited types(0)

Catalog

    Article views (199) PDF downloads (536) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return