Advanced Search+
Donglai WANG (王东来), Tiebing LU (卢铁兵), Yuan WANG (王源), Bo CHEN (陈博), Xuebao LI (李学宝). Measurement of surface charges on the dielectric film based on field mills under the HVDC corona wire[J]. Plasma Science and Technology, 2018, 20(5): 54008-054008. DOI: 10.1088/2058-6272/aaac26
Citation: Donglai WANG (王东来), Tiebing LU (卢铁兵), Yuan WANG (王源), Bo CHEN (陈博), Xuebao LI (李学宝). Measurement of surface charges on the dielectric film based on field mills under the HVDC corona wire[J]. Plasma Science and Technology, 2018, 20(5): 54008-054008. DOI: 10.1088/2058-6272/aaac26

Measurement of surface charges on the dielectric film based on field mills under the HVDC corona wire

Funds: This work is supported by the National Key Research and Development Program (Grant No. 2016YFB0900900) and National Natural Science Foundation of China (Grant No. 51577064).
More Information
  • Received Date: October 30, 2017
  • The ion flow field on the ground is one of the significant parameters used to evaluate the electromagnetic environment of high voltage direct current (HVDC) power lines. HVDC lines may cross the greenhouses due to the restricted transmission corridors. Under the condition of ion flow field, the dielectric films on the greenhouses will be charged, and the electric fields in the greenhouses may exceed the limit value. Field mills are widely used to measure the ground-level direct current electric fields under the HVDC power lines. In this paper, the charge inversion method is applied to calculate the surface charges on the dielectric film according to the measured ground-level electric fields. The advantages of hiding the field mill probes in the ground are studied. The charge inversion algorithm is optimized in order to decrease the impact of measurement errors. Based on the experimental results, the surface charge distribution on a piece of quadrate dielectric film under a HVDC corona wire is studied. The enhanced effect of dielectric film on ground-level electric field is obviously weakened with the increase of film height. Compared with the total electric field strengths, the normal components of film-free electric fields at the corresponding film-placed positions have a higher effect on surface charge accumulation.
  • [1]
    Maruvada P S 2012 IEEE Trans. Power Deliv. 27 401
    [2]
    Janischewskyj W and Gela G 1979 IEEE Trans. Power Appar. Syst. PAS-98 1000
    [3]
    Li X B et al 2016 High Voltage 1 115
    [4]
    Liu X H et al 2014 Plasma Sci. Technol. 16 749
    [5]
    Hatami M M 2013 Plasma Sci. Technol. 15 1169
    [6]
    Du Z Y et al 2013 IEEE Trans. Magn. 49 1933
    [7]
    Li S T, Yu S H and Feng Y 2016 High Voltage 1 122
    [8]
    Bai R et al 2013 IEEE Trans. Power Deliv. 28 2154
    [9]
    Li Q Y et al 2017 Research on surface charge characteristics of insulating ?lm in ion-?ow ?eld 2017 IEEE Int. Symp. on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI) pp 267–71
    [10]
    Takuma T, Yashima M and Kawamoto T 1998 IEEE Trans. Dielectr. Electr. Insul. 5 497
    [11]
    Ootera H and Nakanishi K 1988 IEEE Trans. Power Deliv. 3 165
    [12]
    Wang F et al 2006 Plasma Sci. Technol. 8 565
    [13]
    Kacprzyk R 2012 IEEE Trans. Dielectr. Electr. Insul. 19 134
    [14]
    Lisowski M and Kacprzyk R 2006 IEEE Trans. Dielectr. Electr. Insul. 13 139
    [15]
    Comber M G, Kotter R and McKnight R 1983 IEEE Trans. Power Appar. Syst. PAS-102 3549
    [16]
    Fang C et al 2013 IEEE Trans. Power Deliv. 28 1414
    [17]
    IEEE Standard 1227 (R2010) 2010 IEEE Guide for Measurement of DC Electric Field and Ion Related Quantities (Institute of Electrical and Electronics Engineers (IEEE))
    [18]
    ZhangB,WangWZandHeJ L2015 CSEE J. Power Energy Syst. 1 31
    [19]
    ZouZL, CuiXandLuTB2015 IET Sci. Meas. Technol. 9 973
    [20]
    Yang Y, Lu J Y and Lei Y Z 2008 IEEE Trans. Power Deliv. 23 1736
    [21]
    Ulaby F T, Michielssen E and Ravaioli U 2010 Fundamentals of Applied Electromagnetics 6th edn (New Jersey: Prentice-Hall)
    [22]
    Stone L N 1959 Trans. Am. Inst. Electr. Eng. Power Appar. Syst. 78 1434
  • Related Articles

    [1]Kefeng SHANG (商克峰), Qi ZHANG (张琦), Na LU (鲁娜), Nan JIANG (姜楠), Jie LI (李杰), Yan WU (吴彦). Evaluation on a double-chamber gas-liquid phase discharge reactor for benzene degradation[J]. Plasma Science and Technology, 2019, 21(7): 75502-075502. DOI: 10.1088/2058-6272/ab0d3c
    [2]Yang CAO (曹洋), Guangzhou QU (屈广周), Tengfei LI (李腾飞), Nan JIANG (姜楠), Tiecheng WANG (王铁成). Review on reactive species in water treatment using electrical discharge plasma: formation, measurement, mechanisms and mass transfer[J]. Plasma Science and Technology, 2018, 20(10): 103001. DOI: 10.1088/2058-6272/aacff4
    [3]Sen WANG (王森), Dezheng YANG (杨德正), Feng LIU (刘峰), Wenchun WANG (王文春), Zhi FANG (方志). Spectroscopic study of bipolar nanosecond pulse gas-liquid discharge in atmospheric argon[J]. Plasma Science and Technology, 2018, 20(7): 75404-075404. DOI: 10.1088/2058-6272/aabac8
    [4]Zelong ZHANG (张泽龙), Jie SHEN (沈洁), Cheng CHENG (程诚), Zimu XU (许子牧), Weidong XIA (夏维东). Generation of reactive species in atmospheric pressure dielectric barrier discharge with liquid water[J]. Plasma Science and Technology, 2018, 20(4): 44009-044009. DOI: 10.1088/2058-6272/aaa437
    [5]Yanliang PEI (裴彦良), Liancheng ZHANG (张连成), Yifan HUANG (黄逸凡), Hui YAN (严辉), Xinlei ZHU (朱鑫磊), Zhen LIU (刘振), Keping YAN (闫克平). Discharge electrode configuration effects on the performance of a plasma sparker[J]. Plasma Science and Technology, 2017, 19(9): 95401-095401. DOI: 10.1088/2058-6272/aa7332
    [6]Feng LIU (刘峰), Bo ZHANG (张波), Zhi FANG (方志), Wenchun WANG (王文春). Generation of reactive atomic species of positive pulsed corona discharges in wetted atmospheric flows of nitrogen and oxygen[J]. Plasma Science and Technology, 2017, 19(6): 64008-064008. DOI: 10.1088/2058-6272/aa632f
    [7]QI Xiaohua (齐晓华), YANG Liang (杨亮), YAN Huijie (闫慧杰), JIN Ying (金英), HUA Yue (滑跃), REN Chunsheng (任春生). Experimental Study on Surface Dielectric Barrier Discharge Plasma Actuator with Different Encapsulated Electrode Widths for Airflow Control at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(10): 1005-1011. DOI: 10.1088/1009-0630/18/10/07
    [8]WANG Yanhui (王艳辉), YE Huanhuan (叶换换), ZHANG Jiao (张佼), WANG Qi (王奇), ZHANG Jie (张杰), WANG Dezhen (王德真). Numerical Study of Pulsed Dielectric Barrier Discharge at Atmospheric Pressure Under the Needle-Plate Electrode Configuration[J]. Plasma Science and Technology, 2016, 18(5): 478-484. DOI: 10.1088/1009-0630/18/5/06
    [9]XIN Qing (辛青), ZHANG Yi (张轶), WU Kaibin (巫开斌). Degradation of Microcystin-LR by Gas-Liquid Interfacial Discharge Plasma[J]. Plasma Science and Technology, 2013, 15(12): 1221-1225. DOI: 10.1088/1009-0630/15/12/11
    [10]GONG Jianying (巩建英), ZHANG Xingwang (张兴旺), WANG Xiaoping (王小平), LEI Lecheng (雷乐成). Oxidation of S(IV) in Seawater by Pulsed High Voltage Discharge Plasma with TiO 2 /Ti Electrode as Catalyst[J]. Plasma Science and Technology, 2013, 15(12): 1209-1214. DOI: 10.1088/1009-0630/15/12/09

Catalog

    Article views (277) PDF downloads (469) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return