Advanced Search+
Tao ZHU (竹涛), Ruonan WANG (王若男), Wenjing BIAN (边文璟), Yang CHEN (陈扬), Weidong JING (景伟东). Advanced oxidation technology for H2S odor gas using non-thermal plasma[J]. Plasma Science and Technology, 2018, 20(5): 54007-054007. DOI: 10.1088/2058-6272/aaae62
Citation: Tao ZHU (竹涛), Ruonan WANG (王若男), Wenjing BIAN (边文璟), Yang CHEN (陈扬), Weidong JING (景伟东). Advanced oxidation technology for H2S odor gas using non-thermal plasma[J]. Plasma Science and Technology, 2018, 20(5): 54007-054007. DOI: 10.1088/2058-6272/aaae62

Advanced oxidation technology for H2S odor gas using non-thermal plasma

Funds: This work was supported by the Open Project Program of State Key Laboratory of Petroleum Pollution Control (No. PPC2017010), CNPC Research Institute of Safety and Environmental Technology, and State Key Laboratory of Solid Waste Reuse for Building Materials (SWR2017002), and National Natural Science Foundation of China (No. 51108453), and Program for New Century Excellent Talents in University (No. NCET120967), and the Fundamental Research Funds for the Central Universities (No. 2009QH03).
More Information
  • Received Date: November 05, 2017
  • Non-thermal plasma technology is a new type of odor treatment processing. We deal with H2S from waste gas emission using non-thermal plasma generated by dielectric barrier discharge. On the basis of two criteria, removal efficiency and absolute removal amount, we deeply investigate the changes in electrical parameters and process parameters, and the reaction process of the influence of ozone on H2S gas removal. The experimental results show that H2S removal efficiency is proportional to the voltage, frequency, power, residence time and energy efficiency, while it is inversely proportional to the initial concentration of H2S gas, and ozone concentration. This study lays the foundations of non-thermal plasma technology for further commercial application.
  • [1]
    Chang M B and Tseng T D 1996 J. Environ. Eng. 122 41
    [2]
    Mizuno A et al 1993 IEEE Trans. Ind. Appl. 29 262
    [3]
    Lestari R A S et al 2016 J. Environ. Chem. Eng. 4 2370
    [4]
    Spiers J G et al 2014 Chem. Senses 39 563
    [5]
    Jo J O et al 2014 Chem. Eng. J. 247 291
    [6]
    Holub M et al 2014 Aerosol Air Qual. Res. 14 697
    [7]
    Andersen K B, Feilberg A and Beukes J A 2012 Water Sci. Technol. 66 1656
    [8]
    Cao X et al 2017 Plasma Sci. Technol. 19 045501
    [9]
    Hou J et al 2001 J. Environ. Sci. 22 12 (in Chinese)
    [10]
    Wang J Z et al 2013 Environ. Sci. Technol. 26 74 (in Chinese)
    [11]
    Li Z G et al 2006 Chem. Res. Appl. 18 958 (in Chinese)
    [12]
    Zhang R H, Yamamoto T and Bundy D S 1996 IEEE Trans. Ind. Appl. 32 113
    [13]
    Liang W J et al 2012 CLEAN-Soil, Air, Water 40 586
    [14]
    Zhu T et al 2011 IEEE Trans. Plasma Sci. 39 1695
    [15]
    Yamamoto T et al 1992 IEEE Trans. Ind. Appl. 28 528
    [16]
    Delagrange S, Pinard L and Tatibou?t J M 2007 Appl. Catal. B Environ. 68 92
  • Related Articles

    [1]Kefeng SHANG (商克峰), Qi ZHANG (张琦), Na LU (鲁娜), Nan JIANG (姜楠), Jie LI (李杰), Yan WU (吴彦). Evaluation on a double-chamber gas-liquid phase discharge reactor for benzene degradation[J]. Plasma Science and Technology, 2019, 21(7): 75502-075502. DOI: 10.1088/2058-6272/ab0d3c
    [2]Yang CAO (曹洋), Guangzhou QU (屈广周), Tengfei LI (李腾飞), Nan JIANG (姜楠), Tiecheng WANG (王铁成). Review on reactive species in water treatment using electrical discharge plasma: formation, measurement, mechanisms and mass transfer[J]. Plasma Science and Technology, 2018, 20(10): 103001. DOI: 10.1088/2058-6272/aacff4
    [3]Sen WANG (王森), Dezheng YANG (杨德正), Feng LIU (刘峰), Wenchun WANG (王文春), Zhi FANG (方志). Spectroscopic study of bipolar nanosecond pulse gas-liquid discharge in atmospheric argon[J]. Plasma Science and Technology, 2018, 20(7): 75404-075404. DOI: 10.1088/2058-6272/aabac8
    [4]Zelong ZHANG (张泽龙), Jie SHEN (沈洁), Cheng CHENG (程诚), Zimu XU (许子牧), Weidong XIA (夏维东). Generation of reactive species in atmospheric pressure dielectric barrier discharge with liquid water[J]. Plasma Science and Technology, 2018, 20(4): 44009-044009. DOI: 10.1088/2058-6272/aaa437
    [5]Yanliang PEI (裴彦良), Liancheng ZHANG (张连成), Yifan HUANG (黄逸凡), Hui YAN (严辉), Xinlei ZHU (朱鑫磊), Zhen LIU (刘振), Keping YAN (闫克平). Discharge electrode configuration effects on the performance of a plasma sparker[J]. Plasma Science and Technology, 2017, 19(9): 95401-095401. DOI: 10.1088/2058-6272/aa7332
    [6]Feng LIU (刘峰), Bo ZHANG (张波), Zhi FANG (方志), Wenchun WANG (王文春). Generation of reactive atomic species of positive pulsed corona discharges in wetted atmospheric flows of nitrogen and oxygen[J]. Plasma Science and Technology, 2017, 19(6): 64008-064008. DOI: 10.1088/2058-6272/aa632f
    [7]QI Xiaohua (齐晓华), YANG Liang (杨亮), YAN Huijie (闫慧杰), JIN Ying (金英), HUA Yue (滑跃), REN Chunsheng (任春生). Experimental Study on Surface Dielectric Barrier Discharge Plasma Actuator with Different Encapsulated Electrode Widths for Airflow Control at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(10): 1005-1011. DOI: 10.1088/1009-0630/18/10/07
    [8]WANG Yanhui (王艳辉), YE Huanhuan (叶换换), ZHANG Jiao (张佼), WANG Qi (王奇), ZHANG Jie (张杰), WANG Dezhen (王德真). Numerical Study of Pulsed Dielectric Barrier Discharge at Atmospheric Pressure Under the Needle-Plate Electrode Configuration[J]. Plasma Science and Technology, 2016, 18(5): 478-484. DOI: 10.1088/1009-0630/18/5/06
    [9]XIN Qing (辛青), ZHANG Yi (张轶), WU Kaibin (巫开斌). Degradation of Microcystin-LR by Gas-Liquid Interfacial Discharge Plasma[J]. Plasma Science and Technology, 2013, 15(12): 1221-1225. DOI: 10.1088/1009-0630/15/12/11
    [10]GONG Jianying (巩建英), ZHANG Xingwang (张兴旺), WANG Xiaoping (王小平), LEI Lecheng (雷乐成). Oxidation of S(IV) in Seawater by Pulsed High Voltage Discharge Plasma with TiO 2 /Ti Electrode as Catalyst[J]. Plasma Science and Technology, 2013, 15(12): 1209-1214. DOI: 10.1088/1009-0630/15/12/09

Catalog

    Article views (221) PDF downloads (550) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return