Advanced Search+
Jingjun ZHOU (周靖钧), Li GAO (高丽), Yinan ZHOU (周乙楠), Jiefeng HUANG (黄杰锋), Ge ZHUANG (庄革). Design and development of a synchronized operation control system for Thomson scattering diagnostic on J-TEXT[J]. Plasma Science and Technology, 2018, 20(8): 84001-084001. DOI: 10.1088/2058-6272/aabd73
Citation: Jingjun ZHOU (周靖钧), Li GAO (高丽), Yinan ZHOU (周乙楠), Jiefeng HUANG (黄杰锋), Ge ZHUANG (庄革). Design and development of a synchronized operation control system for Thomson scattering diagnostic on J-TEXT[J]. Plasma Science and Technology, 2018, 20(8): 84001-084001. DOI: 10.1088/2058-6272/aabd73

Design and development of a synchronized operation control system for Thomson scattering diagnostic on J-TEXT

Funds: This work is supported by the National Magnetic Confinement Fusion Science Program of China under Contract No. 2015GB111001 and by National Natural Science Foundation of China (Grant No. 11575067).
More Information
  • Received Date: December 25, 2017
  • A Thomson scattering diagnostic system is under construction at the Joint Texas Experimental Tokamak (J-TEXT). A 1064 nm Nd:YAG laser with 50 Hz repetition rate is used as the laser source. We have used a software for careful and precise control of the laser through serial communication. A time sequence operating system has been developed to synchronize the laser control and data acquisition system with the central control system (CSS). The system operates commands from the CSS of J-TEXT and generates triggers for the laser and data acquisition system in the proper sequence. It also measures an asynchronous time value that is needed for accurate time stamping. All functions are served by a field-programmable gate array development platform that is suitable for high-speed data and signal processing applications. Several embedded peripherals, including Ethernet and USB 2.0, provide communication with the CSS and the server.
  • [1]
    Johnson D et al 1985 Rev. Sci. Instrum. 56 1015
    [2]
    Greenfield C M et al 1990 Rev. Sci. Instrum. 61 3286
    [3]
    Carlstrom T N et al 1992 Rev. Sci. Instrum. 63 4901
    [4]
    Hatae T et al 1999 Rev. Sci. Instrum. 70 772
    [5]
    Lee J H, Oh S T and Wi H M 2010 Rev. Sci. Instrum. 81 10D528
    [6]
    Qing Z et al 2010 Plasma Sci. Technol. 12 144
    [7]
    Liu C H et al 2008 High Power Laser Part. Beams 20 1119 (in Chinese)
    [8]
    Kajita S, Hatae T and Kusama Y 2008 Rev. Sci. Instrum. 79 10E726
    [9]
    Yang Z J et al 2016 Rev. Sci. Instrum. 87 11E112
    [10]
    Chen J et al 2012 Rev. Sci. Instrum. 83 10E306
    [11]
    Hartfuss H J, Geist T and Hirsch M 1999 Plasma Phys. Control. Fusion 39 1693
    [12]
    Zhou Y N et al 2016 Rev. Sci. Instrum. 87 11E522
    [13]
    Han X et al 2018 IEEE Trans. Plasma Sci. 46 406
    [14]
    Lee W R et al 2012 Rev. Sci. Instrum. 83 093505
  • Related Articles

    [1]Runhui WU (邬润辉), Song CHAI (柴忪), Jiaqi LIU (刘佳琪), Shiyuan CONG (从拾源), Gang MENG (孟刚). Numerical simulation and analysis of lithium plasma during low-pressure DC arc discharge[J]. Plasma Science and Technology, 2019, 21(4): 44002-044002. DOI: 10.1088/2058-6272/aafbc7
    [2]Haixin HU (胡海欣), Feng HE (何锋), Ping ZHU (朱平), Jiting OUYANG (欧阳吉庭). Numerical study of the influence of dielectric tube on propagation of atmospheric pressure plasma jet based on coplanar dielectric barrier discharge[J]. Plasma Science and Technology, 2018, 20(5): 54010-054010. DOI: 10.1088/2058-6272/aaaad9
    [3]Yinan WANG (王一男), Yue LIU (刘悦). Numerical study on characteristics of radiofrequency discharge at atmospheric pressure in argon with small admixtures of oxygen[J]. Plasma Science and Technology, 2017, 19(7): 75402-075402. DOI: 10.1088/2058-6272/aa6156
    [4]Muyang QIAN (钱沐杨), Gui LI (李桂), Sanqiu LIU (刘三秋), Yu ZHANG (张羽), Shan LI (李杉), Zebin LIN (林泽斌), Dezhen WANG (王德真). Effect of pulse voltage rising time on discharge characteristics of a helium–air plasma at atmospheric pressure[J]. Plasma Science and Technology, 2017, 19(6): 64015-064015. DOI: 10.1088/2058-6272/aa6154
    [5]WANG Xiaolong (王晓龙), TAN Zhenyu (谭震宇), PAN Jie (潘杰), CHEN Xinxian (陈歆羡). Effects of Oxygen Concentration on Pulsed Dielectric Barrier Discharge in Helium-Oxygen Mixture at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(8): 837-843. DOI: 10.1088/1009-0630/18/8/08
    [6]WANG Yanhui (王艳辉), YE Huanhuan (叶换换), ZHANG Jiao (张佼), WANG Qi (王奇), ZHANG Jie (张杰), WANG Dezhen (王德真). Numerical Study of Pulsed Dielectric Barrier Discharge at Atmospheric Pressure Under the Needle-Plate Electrode Configuration[J]. Plasma Science and Technology, 2016, 18(5): 478-484. DOI: 10.1088/1009-0630/18/5/06
    [7]ZHANG Jiao(张佼), WANG Yanhui(王艳辉), WANG Dezhen(王德真), ZHUANG Juan(庄娟). Two-Dimensional Simulation of Spatial-Temporal Behaviors About Period Doubling Bifurcation in an Atmospheric-Pressure Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2014, 16(2): 110-117. DOI: 10.1088/1009-0630/16/2/05
    [8]LIU Xinkun (刘新坤), XU Jinzhou (徐金洲), CUI Tongfei (崔桐菲), GUO Ying (郭颖), et al.. Gas Breakdown of Radio Frequency Glow Discharges in Helium at near Atmospheric Pressure[J]. Plasma Science and Technology, 2013, 15(7): 623-626. DOI: 10.1088/1009-0630/15/7/04
    [9]LI Xuechun (李雪春), WANG Huan (王欢), DING Zhenfeng (丁振峰), WANG Younian (王友年). Effect of Duty Cycle on the Characteristics of Pulse-Modulated Radio-Frequency Atmospheric Pressure Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2012, 14(12): 1069-1072. DOI: 10.1088/1009-0630/14/12/06
    [10]WANG Xiaohua, YANG Aijun, RONG Mingzhe, LIU Dingxing. Numerical Study on Atmospheric Pressure DBD in Helium: Single-breakdown and Multi-breakdown Discharges[J]. Plasma Science and Technology, 2011, 13(6): 724-729.

Catalog

    Article views (213) PDF downloads (489) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return