Advanced Search+
Qianghua YUAN (袁强华), Pei REN (任佩), Yongjie ZHOU (周永杰), Guiqin YIN (殷桂琴), Chenzhong DONG (董晨钟). OES diagnostic of radicals in 33 MHz radio-frequency Ar/C2H5OH atmospheric pressure plasma jet[J]. Plasma Science and Technology, 2019, 21(2): 25402-025402. DOI: 10.1088/2058-6272/aaebd1
Citation: Qianghua YUAN (袁强华), Pei REN (任佩), Yongjie ZHOU (周永杰), Guiqin YIN (殷桂琴), Chenzhong DONG (董晨钟). OES diagnostic of radicals in 33 MHz radio-frequency Ar/C2H5OH atmospheric pressure plasma jet[J]. Plasma Science and Technology, 2019, 21(2): 25402-025402. DOI: 10.1088/2058-6272/aaebd1

OES diagnostic of radicals in 33 MHz radio-frequency Ar/C2H5OH atmospheric pressure plasma jet

Funds: The authors gratefully acknowledge the support provided by National Natural Science Foundation of China (No. 11165012), Project of Natural Science Foundation of GanSu province (No. 145RJZA159), China Postdoctoral Science Foundation funded project (Nos. 2011M501494 and 2012T50831).
More Information
  • Received Date: April 25, 2018
  • Ar/C2H5OH plasma jet is generated at atmospheric pressure by 33 MHz radio-frequency power source. This RF excitation frequencies which are higher than 13.56 MHz had rarely been used in atmospheric pressure plasma. The plasma characteristics of ethanol are investigated. The introduction of ethanol leads to the generation of four excited carbonaceous species C, CN, CH and C2 in plasma, respectively. Optical emission intensities of four carbonaceous species were strengthened with ethanol content increasing in the range of 0-4600 ppm. The ethanol content increase results in all the Ar spectra lines decrease. The reason is that the electron temperature decreases when ethanol content is high. The emission intensity ratios of C/C2, CN/C2 and CH/C2 decrease with the increase of ethanol content, showing that the relative amount of C2 is increasing by increasing the ethanol flow. The emission intensity ratios of excited species did not change much with the increase of RF power in stable discharge mode.
  • [1]
    Mariotti D and Sankaran R M 2010 J. Phys. D: Appl. Phys. 43 323001
    [2]
    Nozaki T et al 2011 J. Phys. D: Appl. Phys. 44 174007
    [3]
    Labidi S et al 2018 AIP Conf. Proc. 1925 020025
    [4]
    Belmonte T et al 2011 J. Phys. D: Appl. Phys. 44 363001
    [5]
    Fridman G et al 2008 Plasma Process. Polym. 5 503
    [6]
    Shashurin A et al 2008 Appl. Phys. Lett. 93 181501
    [7]
    Duarte S et al 2011 Phys. Plasmas 18 073503
    [8]
    Kong M G et al 2009 New J. Phys. 11 115012
    [9]
    Hazrati H D, Whittle J D and Vasilev K 2014 Plasma Process. Polym. 11 149
    [10]
    Carton O et al 2012 Plasma Process. Polym. 9 984
    [11]
    Nakahiro H et al 2012 Appl. Phys. Express 5 056201
    [12]
    Reyes P G et al 2016 IEEE Trans. Plasma Sci. 44 2995
    [13]
    Kato T et al 2003 Chem. Phys. Lett. 381 422
    [14]
    Bundaleska N et al 2014 Int. J. Hydrog. Energy 39 5663
    [15]
    Hrycak B et al 2015 Open Chem. 13 317
    [16]
    Muthakarn P et al 2006 J. Phys. Chem. B 110 18299
    [17]
    Sano N et al 2002 J. Appl. Phys. 92 2783
    [18]
    Chen L W et al 2010 Phys. Plasmas 17 083502
    [19]
    Kim D B et al 2011 Phys. Plasmas 18 043503
    [20]
    Xian Y et al 2010 J. Appl. Phys. 107 063308
    [21]
    Arnoult G et al 2008 Appl. Phys. Lett. 93 191507
    [22]
    Zhou Y J et al 2013 Phys. Plasmas 20 113502
    [23]
    Zhang Y T et al 2010 Appl. Phys. Lett. 97 141504
    [24]
    Walsh J L et al 2008 Appl. Phys. Lett. 93 221505
    [25]
    Eto H et al 2008 Appl. Phys. Lett. 93 221502
    [26]
    Le P S et al 2009 Appl. Phys. Lett. 95 201501
    [27]
    Reid R C, Prausnitz J M and Sherwood T K 1977 The Properties of Gases and Liquids (New York: McGraw-Hill)
    [28]
    Levko D et al 2011 J. Phys. D: Appl. Phys. 44 145206
    [29]
    Rejoub R et al 2003 J. Chem. Phys. 118 1756
    [30]
    Marinov N M 1999 Int. J. Chem. Kinetics 31 183
    [31]
    Park J, Xu Z F and Lin M C 2003 J. Chem. Phys. 118 9990
    [32]
    Aders W K and Wagner H G 1973 Ber. Bunsenges Phys. Chem. 77 712
    [33]
    Konnov A A 2008 Combust. Flame 152 507
    [34]
    Dean A M and Westmoreland P R 1987 Int. J. Chem. Kinetics 19 207
    [35]
    Tsang W 1987 J. Phys. Chem. Ref. Data 16 471
    [36]
    Baulch D L et al 2005 J. Phys. Chem. Ref. Data 34 757
    [37]
    Tsang W and Hampson R F 1986 J. Phys. Chem. Ref. Data 15 1087
    [38]
    Yanguas-Gil A et al 2007 J. Appl. Phys. 101 103307
    [39]
    Nikiforov A Y, Sarani A and Leys C 2011 Plasma Sources Sci. Technol. 20 015014
    [40]
    Aumaille K et al 2000 Plasma Sources Sci. Technol. 9 331
    [41]
    Sarani A, Nikiforov A Y and Leys C 2010 Phys. Plasma 17 063504
    [42]
    Zhou Y J et al 2014 Plasma Sci. Technol. 16 99
    [43]
    Li S Z et al 2010 Phys. Plasma 17 063506
  • Related Articles

    [1]Zhuoqi LIU, Jiahui ZHANG, Kaibang WU, Xinjun ZHANG, Chengming QIN, Feng WANG, Zhengxiong WANG. Interaction between the core and the edge for ion cyclotron resonance heating based on artificial absorption plasma model[J]. Plasma Science and Technology, 2024, 26(10): 105103. DOI: 10.1088/2058-6272/ad60f5
    [2]P DREWS, H NIEMANN, J COSFELD, Y GAO, J GEIGER, O GRULKE, M HENKEL, D HÖSCHEN, K HOLLFELD, C KILLER, AKRÄMER-FLECKEN, Y LIANG, S LIU, D NICOLAI, O NEUBAUER, M RACK, B SCHWEER, G SATHEESWARAN, L RUDISCHHAUSER, N SANDRI, N WANG, the W-X Team. Magnetic configuration effects on the edge heat flux in the limiter plasma on W7-X measured using the infrared camera and the combined probe[J]. Plasma Science and Technology, 2018, 20(5): 54003-054003. DOI: 10.1088/2058-6272/aaa968
    [3]Fanrong KONG (孔繁荣), Qiuyue NIE (聂秋月), Shu LIN (林澍), Zhibin WANG (王志斌), Bowen LI (李博文), Shulei ZHENG (郑树磊), Binhao JIANG (江滨浩). Studies on omnidirectional enhancement of giga-hertz radiation by sub-wavelength plasma modulation[J]. Plasma Science and Technology, 2018, 20(1): 14017-014017. DOI: 10.1088/2058-6272/aa8f3e
    [4]Guiliang SONG (宋桂良), Huishan CAI (蔡辉山). Linear tearing modes in an electron-positron plasma[J]. Plasma Science and Technology, 2017, 19(4): 45002-045002. DOI: 10.1088/2058-6272/aa5801
    [5]ZHANG Jie (张杰), GUO Ying (郭颖), HUANG Xiaojiang (黄晓江), ZHANG Jing (张菁), SHI Jianjun (石建军). Operation Mode on Pulse Modulation in Atmospheric Radio Frequency Glow Discharges[J]. Plasma Science and Technology, 2016, 18(10): 974-977. DOI: 10.1088/1009-0630/18/10/02
    [6]ZHOU Shengguo (周圣国), LI Hailong (李海龙), FU Luyao (符路遥), WANG Maoyan (王茂琰). Preliminary Study on Active Modulation of Polar Mesosphere Summer Echoes with the Radio Propagation in Layered Space Dusty Plasma[J]. Plasma Science and Technology, 2016, 18(6): 607-610. DOI: 10.1088/1009-0630/18/6/05
    [7]LIN Zhihong (林志宏), S. ETHIER, T. S. HAHM, W. M. TANG. Verification of Gyrokinetic Particle Simulation of Device Size Scaling of Turbulent Transport[J]. Plasma Science and Technology, 2012, 14(12): 1125-1126. DOI: 10.1088/1009-0630/14/12/17
    [8]Y. PIANROJ, T. ONJUN. Simulations of H-Mode Plasmas in Tokamak Using a Complete Core-Edge Modeling in the BALDUR Code[J]. Plasma Science and Technology, 2012, 14(9): 778-788. DOI: 10.1088/1009-0630/14/9/02
    [9]XU Weidong (徐伟东), XUAN Weimin (宣伟民), YAO Lieying (姚列英), WANG Yingqiao (王英翘). Development of 8 MW Power Supply Based on Pulse Step Modulation Technique for Auxiliary Heating System on HL-2A[J]. Plasma Science and Technology, 2012, 14(3): 263-268. DOI: 10.1088/1009-0630/14/3/14
    [10]DONG Chunfeng, Shigeru MORITA, Motoshi GOTO, Masahiro KOBAYASHI. Study on Radial Position of Impurity Ions in Core and Edge Plasma of LHD Using Space-Resolved EUV Spectrometer[J]. Plasma Science and Technology, 2011, 13(2): 140-144.

Catalog

    Article views (154) PDF downloads (245) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return