Advanced Search+
Liying ZHU (朱立颖), Zhigang LIU (刘治钢), Xiaofeng ZHANG (张晓峰), Chao WANG (王超), Xiaofei LI (李小飞), Bingxin ZHAO (赵冰欣). Study on volt-ampere characteristics of solar array arcs in LEO spacecraft[J]. Plasma Science and Technology, 2019, 21(2): 25302-025302. DOI: 10.1088/2058-6272/aaf18a
Citation: Liying ZHU (朱立颖), Zhigang LIU (刘治钢), Xiaofeng ZHANG (张晓峰), Chao WANG (王超), Xiaofei LI (李小飞), Bingxin ZHAO (赵冰欣). Study on volt-ampere characteristics of solar array arcs in LEO spacecraft[J]. Plasma Science and Technology, 2019, 21(2): 25302-025302. DOI: 10.1088/2058-6272/aaf18a

Study on volt-ampere characteristics of solar array arcs in LEO spacecraft

Funds: This work was supported by National Natural Science Foundation of China (No. 51407008).
More Information
  • Received Date: July 27, 2018
  • The primary and secondary arcs volt-ampere characteristics of low earth orbit solar arrays are studied in this research. Using three gallium-arsenide solar cell samples, the gap lengths of the solar cell are set to 1, 2, and 3 mm. First, the primary arc voltage characteristics of a solar array are analyzed. It is found that two steps are involved in the primary arc voltages, which are 116 and 22 V according to our experiment and are independent of the electrostatic discharge current and the gap lengths. By comparing with the arc pattern, we determined that current chopping may be the reason for the stepped arc voltage. Then, the characteristics of the secondary arc of the solar array are demonstrated. The study shows that the secondary arc voltage values increase with the gap length. In the case of the same cell with a fixed gap length, the voltage of the secondary arc increases with the string current. Finally, the relationship between the secondary arc voltage and the gap length is obtained which helps the string voltage and the gap length selection for system design.
  • [1]
    Ferguson D C 2007 Low Earth Orbit Spacecraft Charging Design Handbook (Washington, DC: NASA) NASA-HDBK-4006
    [2]
    Hastings D E, Weyl G and Kaufman D 1990 J. Spacecr. Rockets 27 539
    [3]
    Jongeward G A et al 2001 High voltage solar arrays for a direct drive hall effect propulsion system Proc. 27th Int.-Electric Propulsion Conf. (Pasadena, CA) (IEPC)
    [4]
    Hastings D and Garrett H 2004 Spacecraft-Environment Interactions (Cambridge: Cambridge University Press)
    [5]
    Ferguson D C, Snyder D B and Carruth R 1991 Findings of the Joint Workshop on Evaluation of Impacts of Space Station Freedom Ground Configurations (Washington, DC: NASA) NASA TM-103717 91N22370
    [6]
    Hosoda S et al 2006 IEEE Trans. Plasma Sci. 34 1986
    [7]
    Wright K H et al 2012 IEEE Trans. Plasma Sci. 40 334
    [8]
    Masui H et al 2012 IEEE Trans. Plasma Sci. 40 351
    [9]
    Cho M 2009 Electr. Eng. Japan 166 1
    [10]
    Galofaro J T, Vayner B and Hillard G B 2010 J. Spacecr. Rockets 47 521
    [11]
    Vayner B and Galofaro J T 2012 IEEE Trans. Plasma Sci. 40 388
    [12]
    Okumura T et al 2009 J. Spacecr. Rockets 46 689
    [13]
    Toyoda K et al 2012 IEEE Trans. Plasma Sci. 40 321
    [14]
    Lee T H and Greenwood A 1961 J. Appl. Phys. 32 916
    [15]
    Okumura T et al 2009 J. Spacecr. Rockets 46 697
    [16]
    Zhu L Y et al 2017 Plasma Sci. Technol. 19 055304
    [17]
    Masui H et al 2014 J. Spacecr. Rockets 51 922
  • Related Articles

    [1]Jing ZHANG, Shurong YE, Tianxu LIU, Anbang SUN. 1d3v PIC/MCC simulation of dielectric barrier discharge dynamics in hydrogen sulfide[J]. Plasma Science and Technology, 2022, 24(2): 025401. DOI: 10.1088/2058-6272/ac3d7a
    [2]Hongyu ZHOU (周泓宇), Yan YIN (银燕), Kaiqiang PAN (潘凯强), Chengzhuo XIAO (肖成卓), Jinlong JIAO (矫金龙), Duan XIE (谢端), Tongpu YU (余同普), Fuqiu SHAO (邵福球), Hongbin ZHUO (卓红斌). Investigation of stimulated Raman scattering in longitudinal magnetized plasma by theory and kinetic simulation[J]. Plasma Science and Technology, 2021, 23(11): 115201. DOI: 10.1088/2058-6272/ac2122
    [3]Qi LIU (刘祺), Lei YANG (杨磊), Yuping HUANG (黄玉平), Xu ZHAO (赵絮), Zaiping ZHENG (郑再平). PIC simulation of plasma properties in the discharge channel of a pulsed plasma thruster with flared electrodes[J]. Plasma Science and Technology, 2019, 21(7): 74005-074005. DOI: 10.1088/2058-6272/aaff2e
    [4]Xifeng CAO (曹希峰), Guanrong HANG (杭观荣), Hui LIU (刘辉), Yingchao MENG (孟颖超), Xiaoming LUO (罗晓明), Daren YU (于达仁). Hybrid–PIC simulation of sputtering product distribution in a Hall thruster[J]. Plasma Science and Technology, 2017, 19(10): 105501. DOI: 10.1088/2058-6272/aa7940
    [5]Yuantao ZHANG (张远涛), Yu LIU (刘雨), Bing LIU (刘冰). On peak current in atmospheric pulse-modulated microwave discharges by the PIC-MCC model[J]. Plasma Science and Technology, 2017, 19(8): 85402-085402. DOI: 10.1088/2058-6272/aa6a51
    [6]LU Yijia (路益嘉), JI Linhong (季林红), CHENG Jia (程嘉). Simulation of Dual-Electrode Capacitively Coupled Plasma Discharges[J]. Plasma Science and Technology, 2016, 18(12): 1175-1180. DOI: 10.1088/1009-0630/18/12/06
    [7]HAN Qing (韩卿), WANG Jing (王敬), ZHANG Lianzhu (张连珠). PIC/MCC Simulation of Radio Frequency Hollow Cathode Discharge in Nitrogen[J]. Plasma Science and Technology, 2016, 18(1): 72-78. DOI: 10.1088/1009-0630/18/1/13
    [8]SHEN Wulin (沈武林), MA Zhibin (马志斌), TAN Bisong (谭必松), WU Jun (吴俊). Ion Heating in an ECR Plasma with a Magnetic Mirror Field[J]. Plasma Science and Technology, 2013, 15(6): 516-520. DOI: 10.1088/1009-0630/15/6/06
    [9]DENG Yongfeng(邓永锋), TAN Chang(谭畅), HAN Xianwei(韩先伟), TAN Yonghua(谭永华). Numerical Simulation of the Self-Heating Effect Induced by Electron Beam Plasma in Atmosphere[J]. Plasma Science and Technology, 2012, 14(2): 89-93. DOI: 10.1088/1009-0630/14/2/01
    [10]HAO Xiwei, SONG Baipeng, ZHANG Guanjun. PIC-MCC Simulation for HPM Multipactor Discharge on Dielectric Surface in Vacuum[J]. Plasma Science and Technology, 2011, 13(6): 682-688.
  • Cited by

    Periodical cited type(3)

    1. Ma, F.-F., Zhang, Q.-Z., Schulze, J. et al. Extensive adjustment of magnetic field on plasma density and ion incidence angle in radio frequency discharge. Plasma Sources Science and Technology, 2025, 34(2): 025006. DOI:10.1088/1361-6595/adb20d
    2. Yan, M., Zhang, T., Peng, Y. et al. Effect of magnetic field on capacitively coupled plasma modulated by electron beam injection. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2025, 43(1): 013005. DOI:10.1116/6.0004088
    3. Yan, M., Wu, H., Wu, H. et al. Numerical study of the effects of discharge parameters on capacitively coupled plasma in a magnetic field. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2024, 42(5): 053007. DOI:10.1116/6.0003692

    Other cited types(0)

Catalog

    Article views (134) PDF downloads (266) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return