Citation: | Jun HE (何鋆), Zhiquan SONG (宋执权), Cunwen TANG (汤存文), Peng FU (傅鹏), Jie ZHANG (张杰). Study of contact resistance in the design of a pyro-breaker applied in superconducting fusion facility[J]. Plasma Science and Technology, 2019, 21(6): 65602-065602. DOI: 10.1088/2058-6272/aaf590 |
[1] |
Duday P V et al 2008 Sectionalized explosive current opening switch Proc. 17th Int. Conf. on High Power Particle Beams 2008 (Xian: IEEE)
|
[2] |
Li H et al 2016 Proc. CSEE 36 233–9 (in Chinese)
|
[3] |
Zhu J X et al 2017 Plasma Sci. Technol. 19 055101
|
[4] |
Fang J et al 2000 Plasma Sci. Technol. 2 383
|
[5] |
Song Z Q and Fu P 2005 High Volt. Appar. 41 245–8 (in Chinese)
|
[6] |
Holm R 1967 Electric Contacts: Theory and Application (Berlin: Springer)
|
[7] |
Braunovic M, Myshkin N K and Konchits V V 2006 Electrical Contacts: Fundamentals, Applications and Technology (Boca Raton, FL: CRC Press)
|
[8] |
Li H et al 2018 Plasma Sci. Technol. 20 035102
|
[9] |
Zhang J G et al 1988 The porosity of gold plating by dust contamination Proc. 34th Meeting of the IEEE Holm Conf. on Electrical Contacts (San Francisco, CA, USA, 1988) (https://doi.org/10.1080/00202967.1967.11870022)
|
[10] |
Ashurst K G 1967 The Porosity of Gold Electrodeposits Trans. of the IMF 45 75–85
|
[11] |
Slade P G 2013 Electrical Contacts: Principles and Applications (Boca Raton, FL: CRC Press)
|
[12] |
Bonwitt W F 1948 Trans. Am. Inst. Electr. Eng. 67 1208
|
[13] |
Jackson R L 1982 IEE Proc. C 129 177
|
[14] |
Braunovic M 1990 IEEE Trans. Compon. Hybrids Manuf. Technol. 15 216
|
[15] |
Greenwood J A 1996 Br. J. Appl. Phys. 17 1621
|
[16] |
Cao Y D 2012 Principles of Electrical Apparatus (Beijing: China Machine Press) (in Chinese)
|
[1] | Muzhi TAN, Jianqiang XU, Huarong DU, Jiaqi DONG, Huasheng XIE, Xueyun WANG, Xianli HUANG, Yumin WANG, Xiang GU, Bing LIU, Yuejiang SHI, Yunfeng LIANG, the EHL-2 Team. Predictions of gyrokinetic turbulent transport in proton-boron plasmas on EHL-2 spherical torus[J]. Plasma Science and Technology, 2025, 27(2): 024008. DOI: 10.1088/2058-6272/adad1a |
[2] | Hongjian Zhao, Zehua Guo, Xiangyu Wu, Yong Xiao. Machine learning for electrostatic plasma turbulence classification in tokamaks[J]. Plasma Science and Technology. DOI: 10.1088/2058-6272/add09e |
[3] | A. PONOMARENKO, A. YASHIN, V. GUSEV, E. KISELEV, G. KURSKIEV, V. MINAEV, Y. PETROV, N. SAKHAROV, P. SHCHEGOLEV, E. TKACHENKO, N. ZHILTSOV. First results of turbulence investigation on Globus-M2 using radial correlation Doppler reflectometry[J]. Plasma Science and Technology, 2024, 26(10): 105101. DOI: 10.1088/2058-6272/ad5fe5 |
[4] | Weice WANG, Jun CHENG, Zhongbing SHI, Longwen YAN, Zhihui HUANG, Kaiyang YI, Na WU, Yu HE, Qian ZOU, Xi CHEN, Wen ZHANG, Jian CHEN, Lin NIE, Xiaoquan JI, Wulyu ZHONG. An improved TDE technique for derivation of 2D turbulence structures based on GPI data in toroidal plasma[J]. Plasma Science and Technology, 2024, 26(3): 034018. DOI: 10.1088/2058-6272/ad1c76 |
[5] | Prince ALEX, Suraj Kumar SINHA. Generation scenarios of anodic structures and experimental realization of turbulence in unmagnetized plasma[J]. Plasma Science and Technology, 2020, 22(8): 85402-085402. DOI: 10.1088/2058-6272/ab8b56 |
[6] | Min JIANG (蒋敏), Yuhong XU (许宇鸿), Zhongbing SHI (石中兵), Wulyu ZHONG (钟武律), Wei CHEN (陈伟), Rui KE (柯锐), Jiquan LI (李继全), Xuantong DING (丁玄同), Jun CHENG (程钧), Xiaoquan JI (季小全), Zengchen YANG (杨曾辰), Peiwan SHI (施培万), Jie WEN (闻杰), Kairui FANG (方凯锐), Na WU (吴娜), Xiaoxue HE (何小雪), Anshu LIANG (梁桉树), Yi LIU (刘仪), Qingwei YANG (杨青巍), Min XU (许敏), HL-A Team. Multi-scale interaction between tearing modes and micro-turbulence in the HL-2A plasmas[J]. Plasma Science and Technology, 2020, 22(8): 80501-080501. DOI: 10.1088/2058-6272/ab8785 |
[7] | Lei YE (叶磊), Xiaotao XIAO (肖小涛), Yingfeng XU (徐颖峰), Zongliang DAI (戴宗良), Shaojie WANG (王少杰). Implementation of field-aligned coordinates in a semi-Lagrangian gyrokinetic code for tokamak turbulence simulation[J]. Plasma Science and Technology, 2018, 20(7): 74008-074008. DOI: 10.1088/2058-6272/aac013 |
[8] | Xiang HE (何湘), Chong LIU (刘冲), Yachun ZHANG (张亚春), Jianping CHEN (陈建平), Yudong CHEN (陈玉东), Xiaojun ZENG (曾小军), Bingyan CHEN (陈秉岩), Jiaxin PANG (庞佳鑫), Yibing WANG (王一兵). Diagnostic of capacitively coupled radio frequency plasma from electrical discharge characteristics: comparison with optical emission spectroscopy and fluid model simulation[J]. Plasma Science and Technology, 2018, 20(2): 24005-024005. DOI: 10.1088/2058-6272/aa9a31 |
[9] | GAO Xiang (高翔), ZHANG Tao (张涛), HAN Xiang (韩翔), ZHANG Shoubiao (张寿彪), et al.. Observation of Pedestal Plasma Turbulence on EAST Tokamak[J]. Plasma Science and Technology, 2013, 15(8): 732-737. DOI: 10.1088/1009-0630/15/8/03 |
[10] | Naohiro KASUYA, Seiya NISHIMURA, Masatoshi YAGI, Kimitaka ITOH, Sanae-I ITOH. Heavy Ion Beam Probe Measurement in Turbulence Diagnostic Simulator[J]. Plasma Science and Technology, 2011, 13(3): 326-331. |
1. | Tong, R., Zhou, Y., Zhong, W. et al. A new Q-band comb-based multi-channel microwave Doppler backward scattering diagnostic developed on the HL-3 tokamak. Plasma Science and Technology, 2025, 27(1): 015102. DOI:10.1088/2058-6272/ad8c86 |
2. | Macwan, T., Barada, K., Kubota, S. et al. New millimeter-wave diagnostics to locally probe internal density and magnetic field fluctuations in National Spherical Torus Experiment-Upgrade (invited). Review of Scientific Instruments, 2024, 95(8): 083527. DOI:10.1063/5.0219484 |
3. | Damba, J., Hong, R., Lantsov, R. et al. A Q-band frequency tunable Doppler backscattering (DBS) system for pedestal and scrape-off layer density fluctuation and flow measurements in the DIII-D tokamak. Review of Scientific Instruments, 2024, 95(8): 083512. DOI:10.1063/5.0219566 |
4. | Zhang, X., Yang, S., Fan, M. et al. A High-Speed Data Acquisition and Control System Based on LabVIEW for Long-Pulse Experiments. 2024. DOI:10.1109/CISCE62493.2024.10653131 |
5. | Liu, S., Zhou, C., Liu, A.D. et al. An E-band multi-channel Doppler backscattering system on EAST. Review of Scientific Instruments, 2023, 94(12): 123507. DOI:10.1063/5.0166949 |
6. | Molina Cabrera, P.A., Kasparek, W., Happel, T. et al. W-band tunable, multi-channel, frequency comb Doppler backscattering diagnostic in the ASDEX-Upgrade tokamak. Review of Scientific Instruments, 2023, 94(8): 083504. DOI:10.1063/5.0151271 |
7. | Nasu, T., Tokuzawa, T., Tsujimura, T.I. et al. Receiver circuit improvement of dual frequency-comb ka-band Doppler backscattering system in the large helical device (LHD). Review of Scientific Instruments, 2022, 93(11): 113518. DOI:10.1063/5.0101588 |
8. | Rhodes, T.L., Michael, C.A., Shi, P. et al. Design elements and first data from a new Doppler backscattering system on the MAST-U spherical tokamak. Review of Scientific Instruments, 2022, 93(11): 113549. DOI:10.1063/5.0101848 |
9. | Tokuzawa, T., Inagaki, S., Inomoto, M. et al. Application of Dual Frequency Comb Method as an Approach to Improve the Performance of Multi-Frequency Simultaneous Radiation Doppler Radar for High Temperature Plasma Diagnostics. Applied Sciences (Switzerland), 2022, 12(9): 4744. DOI:10.3390/app12094744 |
10. | Ren, X.H., Yang, Z.J., Shi, Z.B. et al. Development of a tunable multi-channel Doppler reflectometer on J-TEXT tokamak. Review of Scientific Instruments, 2021, 92(3): 033545. DOI:10.1063/5.0040915 |