Advanced Search+
Fubao JIN (金福宝), Yuanxiang ZHOU (周远翔), Bin LIANG (梁斌), Xidong LIANG (梁曦东), Zhongliu ZHOU (周仲柳), Ling ZHANG (张灵). Effect of UV radiation aging on creepage discharge characteristics of high temperature vulcanized silicon rubber at high altitude[J]. Plasma Science and Technology, 2019, 21(5): 54003-054003. DOI: 10.1088/2058-6272/aaff0c
Citation: Fubao JIN (金福宝), Yuanxiang ZHOU (周远翔), Bin LIANG (梁斌), Xidong LIANG (梁曦东), Zhongliu ZHOU (周仲柳), Ling ZHANG (张灵). Effect of UV radiation aging on creepage discharge characteristics of high temperature vulcanized silicon rubber at high altitude[J]. Plasma Science and Technology, 2019, 21(5): 54003-054003. DOI: 10.1088/2058-6272/aaff0c

Effect of UV radiation aging on creepage discharge characteristics of high temperature vulcanized silicon rubber at high altitude

Funds: This paper is supported by the program for Major Project of the Natural Science Foundation of Qinghai Province (No. 2016-ZJ-925Q) and Chinese National Programs for Fundamental Research (No. 2011CB209400) and (VSN 201602), (2017-K-23).
More Information
  • Received Date: September 18, 2018
  • The physicochemical properties and creepage discharge characteristics of aged high temperature Vulcanized (HTV) silicone rubber materials were investigated by ultraviolet radiation (UV) aging method in this study. The experimental results show that as the aging time increases, the creepage discharge flashover voltage increases first and then decreases. But the aging time has little effect on the creepage discharge inception voltage. With the aging time prolonged, the discharge endurance time of HTV silicone rubber is shortened, and the creepage discharge development velocity is accelerated. In the short time of applying voltage to aging material, the magnitude of discharge increases rapidly. According to the partial discharge characteristic parameters of creepage discharge, the whole creepage discharge process is partitioned into four stages. Compared with unaged HTV silicone rubber, the aged HTV silicone rubber has less fluctuation in performance parameters and a clear trend. The study found that UV aging not only affects the physicochemical and hydrophobic properties of the HTV silicone rubber, but also accelerates the development of creepage discharge under AC voltage.
  • [1]
    Wang J, Liang X D and Liu Y 2012 Adv. Mater. Res. 455–456 271
    [2]
    Gubanski S M 2005 IEEE Electr. Insul. Mag. 21 5
    [3]
    Yoshimura N, Kumagai S and Nishimura S 1999 IEEE Trans. Dielectr. Electr. Insul. 6 632
    [4]
    Phillips A J et al 2008 IEEE Trans. Power Deliv. 23 823
    [5]
    Reynders J P, Jandrell I R and Reynders S M 1999 IEEE Trans. Dielectr. Electr. Insul. 6 620
    [6]
    Liu Z H 2006 Power Syst. Technol. 30 1 (in Chinese)
    [7]
    Qi B, Wei Z and Li C R 2016 IEEE Trans. Dielectr. Electr. Insul. 23 237
    [8]
    Jia B Y 2012 High Volt. Eng. 38 914 (in Chinese)
    [9]
    Chen Q 2016 Insul. Mater. 49 7 (in Chinese)
    [10]
    Xu J et al 2011 Power Syst. Technol. 35 213 (in Chinese)
    [11]
    Fard M A, Reid A J and Hepburn D M 2017 IEEE Trans. Dielectr. Electr. Insul. 24 7
    [12]
    Zhang G J et al 2016 High Volt. Apparat. 52 1 (in Chinese)
    [13]
    Song W et al 2015 IEEE Trans. Dielectr. Electr. Insul. 22 961
    [14]
    Zhu M X et al 2016 IEEE Trans. Dielectr. Electr. Insul. 23 482
    [15]
    Wang M D et al 2017 TSC characteristics of composite insulators in 2000h salt fog ageing test Proc. 2017 IEEE Electrical Insulation Conf. (EIC) (Baltimore) (IEEE) (https://doi.org/10.1109/EIC.2017.8004646)
    [16]
    Zhou Y X et al 2018 Plasma Sci. Technol. 20 054016
    [17]
    Liang Y 2008 Study on the corona aging characteristics and mechanism of HTV silicone rubber PhD Thesis North China Electric Power University (in Chinese)
    [18]
    Lei Z P et al 2016 High Volt. Eng. 42 3924 (in Chinese)
    [19]
    Tu Y P et al 2016 Discharge breakdown by-products of CF3I/ N2 gas mixtures at high pressure Proc. 2016 IEEE Electrical Insulation Conf. (EIC) (Montreal) (IEEE) p 301
    [20]
    Ding L J et al 2008 The influence of corona intensity on the TSC of HTV silicone rubber Proc. 2008 Annual Report Conf. on Electrical Insulation and Dielectric Phenomena (Quebec) (IEEE) p 305
    [21]
    Liang Y, Jin Z and Zhang J C 2016 Proc. CSEE 36 6294 (in Chinese)
    [22]
    Pan C et al 2017 Plasma Sci. Technol. 19 075503
    [23]
    Zhou Y X et al 2015 IEEE Trans. Dielectr. Electr. Insul. 22 2737
    [24]
    Zhou Y X et al 2013 Influence of temperature on developing process of surface flashover in oil-paper insulation under combined AC-DC voltage Proc. 2013 Annual Report Conf. on Electrical Insulation and Dielectric Phenomena (Shenzhen) (IEEE) p 486
    [25]
    Jin F B et al 2018 Effects of temperature on characteristics of creepage discharge in oil-impregnated pressboard insulation under combined AC-DC voltage Proc. 12th Int. Conf. on the Properties and Applications of Dielectric Materials (ICPADM) (Xi’an) (IEEE)
    [26]
    Zhou Y X et al 2013 Surface flashover characteristics of oil- paper insulation under combined AC-DC voltage Proc. 2013 IEEE Int. Conf. on Solid Dielectrics (ICSD) (Bologna) (IEEE) (https://doi.org/10.1109/ICSD.2013.6619696)
  • Related Articles

    [1]Chundong HU (胡纯栋), Yongjian XU (许永建), Yuanlai XIE (谢远来), Yahong XIE (谢亚红), Lizhen LIANG (梁立振), Caichao JIANG (蒋才超), Sheng LIU (刘胜), Jianglong WEI (韦江龙), Peng SHENG (盛鹏), Zhimin LIU (刘智民), Ling TAO (陶玲), the NBI Team. Thermal analysis of EAST neutral beam injectors for long-pulse beam operation[J]. Plasma Science and Technology, 2018, 20(4): 45602-045602. DOI: 10.1088/2058-6272/aaa4f0
    [2]WEI Zian (卫子安), MA Jinxiu (马锦秀), LI Yuanrui (李元瑞), SUN Yan (孙彦), JIANG Zhengqi (江正琦). Control of Beam Energy and Flux Ratio in an Ion-Beam-Background Plasma System Produced in a Double Plasma Device[J]. Plasma Science and Technology, 2016, 18(11): 1076-1080. DOI: 10.1088/1009-0630/18/11/04
    [3]WEI Jianglong (韦江龙), XIE Yahong (谢亚红), LIANG Lizhen (梁立振), GU Yuming (顾玉明), YI Wei (邑伟), LI Jun (李军), HU Chundong (胡纯栋), XIE Yuanlai (谢远来), JIANG Caichao (蒋才超), TAO Ling (陶玲), SHENG Peng (盛鹏), XU Yongjian (许永建). Design of the Prototype Negative Ion Source for Neutral Beam Injector at ASIPP[J]. Plasma Science and Technology, 2016, 18(9): 954-959. DOI: 10.1088/1009-0630/18/9/13
    [4]JIN Yizhou (金逸舟), YANG Juan (杨涓), TANG Mingjie (汤明杰), LUO Litao (罗立涛), FENG Bingbing (冯冰冰). Diagnosing the Fine Structure of Electron Energy Within the ECRIT Ion Source[J]. Plasma Science and Technology, 2016, 18(7): 744-750. DOI: 10.1088/1009-0630/18/7/08
    [5]HU Chundong (胡纯栋) for the NBI team. Preliminary Results of Ion Beam Extraction Tests on EAST Neutral Beam Injector[J]. Plasma Science and Technology, 2012, 14(10): 871-873. DOI: 10.1088/1009-0630/14/10/03
    [6]K. Ogawa, M. Isobe, K. Toi, F. Watanabe, D. A. Spong, A. Shimizu, M. Osakabe, D. S. Darrow, S. Ohdachi, S. Sakakibara, LHD Experiment Group. Magnetic Configuration Effects on Fast Ion Losses Induced by Fast Ion Driven Toroidal Alfvén Eigenmodes in the Large Helical Device[J]. Plasma Science and Technology, 2012, 14(4): 269-272. DOI: 10.1088/1009-0630/14/4/01
    [7]LI Jibo(李吉波), DING Siye(丁斯晔), WU Bin(吴斌), HU Chundong(胡纯栋). Simulations of Neutral Beam Ion Ripple Loss on EAST[J]. Plasma Science and Technology, 2012, 14(1): 78-82. DOI: 10.1088/1009-0630/14/1/17
    [8]LIU Xuelan (刘雪兰), XU An (许安), DAI Yin (戴银), YUAN Hang (袁航), YU Zengliang (余增亮). Surface Etching and DNA Damage Induced by Low-Energy Ion Irradiation in Yeast[J]. Plasma Science and Technology, 2011, 13(3): 381-384.
    [9]YANG Yao, GAO Xiang, the EAST team. Energy Confinement of both Ohmic and LHW Plasma on EAST[J]. Plasma Science and Technology, 2011, 13(3): 312-315.
    [10]Leila GHOLAMZADEH, Abbas GHASEMIZAD. Non-Uniformity of Heavy-Ion Beam Irradiation on a Direct-Driven Pellet in Inertial Confinement Fusion[J]. Plasma Science and Technology, 2011, 13(1): 44-49.
  • Cited by

    Periodical cited type(23)

    1. Gao, X., Deng, Y., Wei, Z. et al. Catalytic oxidation of volatile organic compounds by plasma–metal oxide coupling. Journal of Environmental Chemical Engineering, 2025, 13(2): 116045. DOI:10.1016/j.jece.2025.116045
    2. Qu, M., Zheng, Y., Cheng, Z. et al. Mechanism of chlorobenzene removal in biotrickling filter enhanced by non-thermal plasma: Insights from biodiversity and functional gene perspectives. Bioresource Technology, 2025. DOI:10.1016/j.biortech.2024.131931
    3. Zang, X., Sun, H., Wang, W. et al. Plasma-catalytic removal of toluene over bimetallic M/Mn-BTC catalysts in dielectric barrier discharge reactor. Separation and Purification Technology, 2024. DOI:10.1016/j.seppur.2023.125667
    4. Zhang, W., Xing, Y., Hao, L. et al. Effect of gas components on the degradation mechanism of o-dichlorobenzene by non-thermal plasma technology with single dielectric barrier discharge. Chemosphere, 2023. DOI:10.1016/j.chemosphere.2023.139866
    5. Zhang, L., Zou, Z., Lei, Z. et al. Research on the Mechanism of Synergistic Treatment of VOCs–O3 by Low Temperature Plasma Catalysis Technology. Plasma Chemistry and Plasma Processing, 2023, 43(6): 1651-1672. DOI:10.1007/s11090-023-10366-3
    6. Tao, Y., Xu, Y., Chang, K. et al. Dielectric barrier discharge plasma synthesis of Ag/γ-Al2O3 catalysts for catalytic oxidation of CO. Plasma Science and Technology, 2023, 25(8): 085504. DOI:10.1088/2058-6272/acc14c
    7. Shi, X., Liang, W., Yin, G. et al. Degradation of chlorobenzene by non-thermal plasma coupled with catalyst: influence of catalyst, interaction between plasma and catalyst. Plasma Science and Technology, 2023, 25(5): 055506. DOI:10.1088/2058-6272/acae56
    8. Huang, H., He, L., Wang, Y. et al. Experimental study on toluene removal by a two-stage plasma-biofilter system. Plasma Science and Technology, 2022, 24(12): 124011. DOI:10.1088/2058-6272/aca582
    9. Shi, X., Liang, W., Yin, G. et al. Effect of the factors on the mixture of toluene and chlorobenzene degradation by non-thermal plasma. Journal of Environmental Chemical Engineering, 2022, 10(6): 108927. DOI:10.1016/j.jece.2022.108927
    10. Shi, X., Liang, W., Yin, G. et al. Degradation of chlorobenzene by non-thermal plasma with Mn based catalyst | [低温等离子体协同 Mn 基催化剂降解氯苯研究]. Huagong Xuebao/CIESC Journal, 2022, 73(10): 4472-4483. DOI:10.11949/0438-1157.20220696
    11. Zhu, X., Xiong, H., Liu, J. et al. Plasma-enhanced catalytic oxidation of ethylene oxide over Fe–Mn based ternary catalysts. Journal of the Energy Institute, 2022. DOI:10.1016/j.joei.2022.06.002
    12. Zhu, X., Wu, X., Liu, J. et al. Soot Oxidation over γ-Al2O3-Supported Manganese-Based Binary Catalyst in a Dielectric Barrier Discharge Reactor. Catalysts, 2022, 12(7): 716. DOI:10.3390/catal12070716
    13. Yu, X., Dang, X., Li, S. et al. Abatement of chlorobenzene by plasma catalysis: Parameters optimization through response surface methodology (RSM), degradation mechanism and PCDD/Fs formation. Chemosphere, 2022. DOI:10.1016/j.chemosphere.2022.134274
    14. Gu, J., Shen, X., Liang, X. et al. Research on the removal of H2S using dielectric barrier discharge combined with photocatalysis and the fate of sulfur in the reaction. Chemical Engineering and Processing - Process Intensification, 2022. DOI:10.1016/j.cep.2022.108984
    15. Li, Y., Lv, J., Xu, Q. et al. Study of the Treatment of Organic Waste Gas Containing Benzene by a Low Temperature Plasma-Biological Degradation Method. Atmosphere, 2022, 13(4): 622. DOI:10.3390/atmos13040622
    16. Chang, T., Ma, C., Nikiforov, A. et al. Plasma degradation of trichloroethylene: Process optimization and reaction mechanism analysis. Journal of Physics D: Applied Physics, 2022, 55(12): 125202. DOI:10.1088/1361-6463/ac40bb
    17. Lin, Q., Peng, H., Xie, W. et al. Evaluation catalytic performance of Ag/TiO2 in dielectric barrier discharge plasma. Vacuum, 2022. DOI:10.1016/j.vacuum.2021.110844
    18. Xie, L., Lu, J., Ye, G. et al. Decomposition of gaseous chlorobenzene using a DBD combined CuO/α-Fe2O3 catalysis system. Environmental Technology (United Kingdom), 2022, 43(18): 2743-2754. DOI:10.1080/09593330.2021.1899292
    19. Li, S., Yu, X., Dang, X. et al. Non-thermal plasma coupled with MOx/γ-Al2O3 (M: Fe, Co, Mn, Ce) for chlorobenzene degradation: Analysis of byproducts and the reaction mechanism. Journal of Environmental Chemical Engineering, 2021, 9(6): 106562. DOI:10.1016/j.jece.2021.106562
    20. Jin, X., Wang, G., Lian, L. et al. Chlorobenzene removal using dbd coupled with cuo/γ-al2 o3 catalyst. Applied Sciences (Switzerland), 2021, 11(14): 6433. DOI:10.3390/app11146433
    21. Zhou, W., Ye, Z., Nikiforov, A. et al. The influence of relative humidity on double dielectric barrier discharge plasma for chlorobenzene removal. Journal of Cleaner Production, 2021. DOI:10.1016/j.jclepro.2020.125502
    22. Zhao, Y., Ye, K., Zhuang, Y. et al. Progress of manganese catalysts for non-thermal plasma catalysis on VOCs degradation. Huagong Jinzhan/Chemical Industry and Engineering Progress, 2020, 39(S2): 175-184. DOI:10.16085/j.issn.1000-6613.2020-1111
    23. Wang, R., Ren, J., Wu, J. et al. Characteristics and mechanism of toluene removal by double dielectric barrier discharge combined with an Fe2O3/TiO2/γ-Al2O3catalyst. RSC Advances, 2020, 10(68): 41511-41522. DOI:10.1039/d0ra07938c

    Other cited types(0)

Catalog

    Article views (163) PDF downloads (273) Cited by(23)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return