Advanced Search+
Weiwei FAN (范伟伟), Bowen ZHENG (郑博文), Jing CAO (曹靖), Shibiao TANG (唐世彪), Qingwei YANG (杨青蔚), Zejie YIN (阴泽杰). Development of a fast electron bremsstrahlung diagnostic system based on LYSO and silicon photomultipliers during lower hybrid current drive for tokamak[J]. Plasma Science and Technology, 2019, 21(6): 65104-065104. DOI: 10.1088/2058-6272/ab0a77
Citation: Weiwei FAN (范伟伟), Bowen ZHENG (郑博文), Jing CAO (曹靖), Shibiao TANG (唐世彪), Qingwei YANG (杨青蔚), Zejie YIN (阴泽杰). Development of a fast electron bremsstrahlung diagnostic system based on LYSO and silicon photomultipliers during lower hybrid current drive for tokamak[J]. Plasma Science and Technology, 2019, 21(6): 65104-065104. DOI: 10.1088/2058-6272/ab0a77

Development of a fast electron bremsstrahlung diagnostic system based on LYSO and silicon photomultipliers during lower hybrid current drive for tokamak

Funds: This work is supported by National Natural Science Foundation of China (No. 11575184).
More Information
  • Received Date: October 31, 2018
  • A novel real time fast electron bremsstrahlung (FEB) diagnostic system based on the lutetium yttrium oxyorthosilicate scintillators (LYSO) and silicon photomultipliers (SiPM) has been developed for tokamak. The diagnostic system is dedicated to study the FEB emission in the hard x-ray (HXR) energy range between 10 and 200 keV during the lower hybrid current drive. The system consists of a detection module and three data acquisition and processing (DAP) boards. The detection module consists of annulus LYSO-SiPM detector array and a 12-channel preamplifier module. The DAP boards upload the data to the host computer for displaying and storing through PXI bus. The time and space resolutions of the system are 10 ms and 4cm, respectively. The experimental results can show the evolution over time and the spatial distribution of FEB. This paper presents the system performance and typical discharge results.
  • [1]
    Taylor T S 1997 Plasma Phys. Control. Fusion 39 B47
    [2]
    Litaudon X et al 2001 Plasma Phys. Control. Fusion 43 677
    [3]
    Fisch N J 1978 Phys. Rev. Lett. 41 873
    [4]
    Brusati M et al 1994 Nucl. Fusion 34 23
    [5]
    Von Goeler S et al 1985 Nucl. Fusion 25 1515
    [6]
    Yang J W et al 1997 Nucl. Fusion Plasma Phys. 17 28 (in Chinese)
    [7]
    Peysson Y 1999 Plasma Phys. Control. Fusion 35 B253
    [8]
    Bizarro J P et al 1993 Phys. Fluids B 5 3276
    [9]
    Peysson Y and Arslanbekov R 1996 Nucl. Instrum. Methods Phys. Res. A 380 423
    [10]
    Li J R et al 2009 Vacuum 46 79 (in Chinese)
    [11]
    Zhang Y P et al 2014 Fusion Sci. Technol. 65 366
    [12]
    Chen Z Y et al 2005 Nucl. Instrum. Methods Phys. Res. A 543 602
    [13]
    Liptac J et al 2006 Rev. Sci. Instrum. 77 103504
    [14]
    Vega J et al 2015 Advanced disruption predictor based on the locked mode signal: application to jet Proc. 1st EPS Conf. on Plasma Diagnostics (Frascati, Italy: EPS) (https://doi. org/10.22323/1.240.0028)
    [15]
    Zhang L Y et al 2014 IEEE Tran. Nucl. Sci. 61 483
    [16]
    Buzhan P et al 2003 Nucl. Instrum. Methods Phys. Res. A 504 48
    [17]
    Peysson Y and Imbeaux F 1999 Rev. Sci. Instrum. 70 3987
    [18]
    Liang H C, Jan M L and Su J L 2006 Evaluation of an LYSO based multi-PMT detector for both positron and single photon imaging usage Proc. 2006 IEEE Nuclear Science Symp. Conf. Record (San Diego, CA, USA: IEEE) p 1896
    [19]
    Mao R, Zhang L Y and Zhu R Y 2008 IEEE Trans. Nucl. Sci. 55 2425
    [20]
    Jackson C 2015 SenL B-Series and C-Series silicon photomultiplier for time-of-flight position emission tomography Nucl. Instrum. Methods Phys. Res. A 787 169
    [21]
    Knoll G F 1989 Radiation Detection and Measurement 3rd edn (New York: Wiley)
    [22]
    Cao J et al 2015 Nucl. Sci. Tech. 26 060402
    [23]
    Imperiale C and Imperiale A 2001 Measurement 30 49
    [24]
    Zhang Y P et al 2010 Rev. Sci. Instrum. 81 103501
    [25]
    Chen Z Y et al 2011 Phys. Scr. 83 045502
    [26]
    Button K J 1979 Infrared and Millimeter Waves (New York: Academic)
    [27]
    Huang Y et al 2007 Rev. Sci. Instrum. 78 113501
    [28]
    Lin S Y et al 2006 Plasma Sci. Technol. 8 261
  • Cited by

    Periodical cited type(7)

    1. Cheng, S.-K., Zhang, Y.-P., Shi, Y.-J. et al. Geant4 simulation of fast-electron bremsstrahlung imaging at the HL-3 tokamak. Nuclear Science and Techniques, 2024, 35(9): 159. DOI:10.1007/s41365-024-01505-2
    2. Chen, H., Zhao, C., Wang, Z. et al. Design of a composite collimator for the hard X-ray camera in HL-2M tokamak. Journal of Instrumentation, 2023, 18(5): T05007. DOI:10.1088/1748-0221/18/05/T05007
    3. Kumar, J., Pandya, S., Sharma, P. Conceptual design of multichannel fast electron bremsstrahlung detection system to study fast electron dynamics during lower hybrid current drive in ADITYA-U tokamak. Journal of Instrumentation, 2023, 18(3): P03040. DOI:10.1088/1748-0221/18/03/P03040
    4. Wu, T., Hua, Z., Tang, G. et al. Enhanced photoluminescence quantum yield of Ce3+-doped aluminum–silicate glasses for scintillation application. Journal of the American Ceramic Society, 2023, 106(1): 476-487. DOI:10.1111/jace.18761
    5. Zhang, W., Wu, T., Zhang, J. et al. Research on the real-time signal conditioning method for dispersion interferometer in HL-2M. Plasma Science and Technology, 2020, 22(11): 115601. DOI:10.1088/2058-6272/abb078
    6. Cao, H.-R., Wang, H.-X., Zheng, Y.-Y. et al. Development of Digital Multi-channel and Time-division Pulse Height Analyzer Based on PXIE Bus for Hard X-ray Diagnostic in East. Instruments and Experimental Techniques, 2020, 63(4): 453-460. DOI:10.1134/S002044122004003X
    7. Zheng, B.-W., Zhang, W., Wu, T.-Y. et al. Development of the real-time double-ring fusion neutron time-of-flight spectrometer system at HL-2M. Nuclear Science and Techniques, 2019, 30(12): 175. DOI:10.1007/s41365-019-0702-3

    Other cited types(0)

Catalog

    Article views (155) PDF downloads (260) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return