Advanced Search+
Luying NIU(牛璐莹), Hongrui CAO (曹宏睿), Kun XU(徐坤), Liqun HU(胡立群). Neutronic analysis of ITER radial x-ray camera[J]. Plasma Science and Technology, 2019, 21(2): 25601-025601. DOI: 10.1088/2058-6272/aaeba5
Citation: Luying NIU(牛璐莹), Hongrui CAO (曹宏睿), Kun XU(徐坤), Liqun HU(胡立群). Neutronic analysis of ITER radial x-ray camera[J]. Plasma Science and Technology, 2019, 21(2): 25601-025601. DOI: 10.1088/2058-6272/aaeba5

Neutronic analysis of ITER radial x-ray camera

Funds: This work is supported by National Natural Science Foundation of China (No. 11605240) and China International Nuclear Fusion Energy Program Execution Center Radial x-ray Camera Design Contract (No. 5.5.P1.CN.02/1A).
More Information
  • Received Date: July 09, 2018
  • The radial x-ray camera (RXC) is designed to measure the poloidal profile of plasma x-ray emission with high spatial and temporal resolution. The RXC diagnostic system consists of internal camera module and external camera module that view the core region and outer region through the vertical slots of the diagnostic first wall and diagnostics shield module of the equatorial port plug. To ensure the normal performance of the silicon photodiode array detectors of the cameras in the hard neutron irradiation environment in ITER tokamak, it is necessary to calculate neutron flux, radiation damage and the nuclear heating of the silicon photodiode array detectors and simulate the radiation maps of the range of RXC. This work estimated the nuclear environment of RXC based on Monte Carlo N-particle transport code, plasma scenarios of ITER tokamak and the RXC-integrated ITER CLITE model. The neutron flux of silicon photodiode array detectors and the lifetime of the silicon photodiode detector in the camera were calculated. The neutronic analysis results show that the shielding design has achieved the effect as expected and is able to guarantee the normal work of the detector during the ITER deuterium–deuterium phase without replacement, three detectors of the external camera can be operated during the whole deuterium–tritium phase without replacement.
  • [1]
    Suarez A et al 2015 Fusion Eng. Des. 98–99 1427
    [2]
    Colling B et al 2016 Fusion Eng. Des. 109–111 1109
    [3]
    Costley A E et al 2008 Measurement requirements and the diagnostic system on ITER: modifications following the design review Proc. 22nd IAEA Fusion Energy Conf. (Geneva, Switzerland) (International Atomic Energy Agency)
    [4]
    Wang S K et al 2013 Electromagnetic behavior on ITER radial soft x-ray camera Proc. 25th Symp. on Fusion Engineering (San Francisco, CA) (IEEE) 2013
    [5]
    Hu L et al 2016 Fusion Sci. Technol. 70 112
    [6]
    Vayakis G 2014 Current status of ITER diagnostics development Proc. 26th ITPA Topical Group Spring Mtg (Pohang, South Korea) (https://portal.iter.org/ departments/POP/ITPA/Diag/DIAG)
    [7]
    Hu L et al 2017 Nucl. Instrum. Methods Phys. Res. A 870 50
    [8]
    Hu L et al 2014 Progress on the ITER diagnostic-radial x-ray camera Proc. 25th IAEA Fusion Energy Conf. (Saint Petersburg, Russian Federation) (International Atomic Energy Agency)
    [9]
    X-5 Monte Carlo Team 2003 MCNP—A general Monte Carlo N-particle Transport Code Version 5 LA-UR-03-1987 Los Alamos National Laboratory
    [10]
    Polunovskiy E 2013 ITER_D_JLDCY7, Status of C-Lite: https://user.iter.org/default.aspx?uid=JLDCY7
    [11]
    Kim J W et al 2015 Fusion Sci. Technol. 68 652
    [12]
    Wu Y and Team F D S 2009 Fusion Eng. Des. 84 1987
    [13]
    Davis A and Turner A 2011 Fusion Eng. Des. 86 2698
    [14]
    Aldama D L and Trkov A 2004 FENDL-2.1: Evaluated Nuclear Data Library for Fusion Applications IAEA Report INDC (NDS)-467, FENDL-2.1 Library Home: http://nds. iaea.org/fendl21/
    [15]
    Zhu Q J, Li J and Liu S L 2016 Plasma Sci. Technol. 18 775
    [16]
    Alper B et al 1997 Rev. Sci. Instrum. 68 778
    [17]
    Kohagura J et al 2003 Nucl. Instrum. Methods Phys. Res. A 513 300
    [18]
    Campbell D 2009 ITER_D_2FB8AC, ITER Research Plan: https://user.iter.org/default.aspx?uid=2FB8AC
    [19]
    Dentan M 2013 ITER_D_ KR6349, Outcome of RHA-CM- 003 side meeting on simplified radiation maps: https://user. iter.org/default.aspx?uid=KR6349
  • Related Articles

    [1]Jianchao LI, Xiaoqing ZHANG, Yu ZHANG, Abba Alhaji BALA, Huiping LIU, Guohong ZHOU, Nengchao WANG, Da LI, Zhongyong CHEN, Zhoujun YANG, Zhipeng CHEN, Jiaolong DONG, Yonghua DING, the J-TEXT Team. Investigation of the J-TEXT plasma events by k-means clustering algorithm[J]. Plasma Science and Technology, 2023, 25(8): 085103. DOI: 10.1088/2058-6272/acc3d1
    [2]Qingdong ZENG, Guanghui CHEN, Wenxin LI, Zitao LI, Juhong TONG, Mengtian YUAN, Boyun WANG, Honghua MA, Yang LIU, Lianbo GUO, Huaqing YU. Classification of steel based on laser-induced breakdown spectroscopy combined with restricted Boltzmann machine and support vector machine[J]. Plasma Science and Technology, 2022, 24(8): 084009. DOI: 10.1088/2058-6272/ac72e3
    [3]Liuyang ZHAN (詹浏洋), Xiaohong MA (马晓红), Weiqi FANG (方玮骐), Rui WANG (王锐), Zesheng LIU (刘泽生), Yang SONG (宋阳), Huafeng ZHAO (赵华凤). A rapid classification method of aluminum alloy based on laser-induced breakdown spectroscopy and random forest algorithm[J]. Plasma Science and Technology, 2019, 21(3): 34018-034018. DOI: 10.1088/2058-6272/aaf7bf
    [4]Chengxu LU (吕程序), Bo WANG (王博), Xunpeng JIANG (姜训鹏), Junning ZHANG (张俊宁), Kang NIU (牛康), Yanwei YUAN (苑严伟). Detection of K in soil using time-resolved laser-induced breakdown spectroscopy based on convolutional neural networks[J]. Plasma Science and Technology, 2019, 21(3): 34014-034014. DOI: 10.1088/2058-6272/aaef6e
    [5]Junwei JIA (贾军伟), Hongbo FU (付洪波), Zongyu HOU (侯宗余), Huadong WANG (王华东), Zhibo NI (倪志波), Fengzhong DONG (董凤忠). Calibration curve and support vector regression methods applied for quantification of cement raw meal using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2019, 21(3): 34003-034003. DOI: 10.1088/2058-6272/aae3e1
    [6]Yangmin GUO (郭阳敏), Yun TANG (唐云), Yu DU (杜宇), Shisong TANG (唐仕松), Lianbo GUO (郭连波), Xiangyou LI (李祥友), Yongfeng LU (陆永枫), Xiaoyan ZENG (曾晓雁). Cluster analysis of polymers using laser-induced breakdown spectroscopy with K-means[J]. Plasma Science and Technology, 2018, 20(6): 65505-065505. DOI: 10.1088/2058-6272/aaaade
    [7]Wei ZHANG (张伟), Tongyu WU (吴彤宇), Bowen ZHENG (郑博文), Shiping LI (李世平), Yipo ZHANG (张轶泼), Zejie YIN (阴泽杰). A real-time neutron-gamma discriminator based on the support vector machine method for the time-of-fiight neutron spectrometer[J]. Plasma Science and Technology, 2018, 20(4): 45601-045601. DOI: 10.1088/2058-6272/aaaaa9
    [8]Dingliang TANG (汤丁亮), Xianhui ZHANG (张先徽), Si-ze YANG (杨思泽). Plasma electrolytic liquefaction of cellulosic biomass[J]. Plasma Science and Technology, 2018, 20(4): 44002-044002. DOI: 10.1088/2058-6272/aa9563
    [9]JIN Shuo (金硕), RUAN Jiangjun (阮江军), DU Zhiye (杜志叶), ZHU Lin (朱琳), SHU Shengwen (舒胜文). Prediction of DC Corona Onset Voltage for Rod-Plane Air Gaps by a Support Vector Machine[J]. Plasma Science and Technology, 2016, 18(10): 998-1004. DOI: 10.1088/1009-0630/18/10/06
    [10]YANG Guang (杨光), QIAO Shujun (乔淑君), CHEN Pengfei (陈鹏飞), DING Yu (丁宇), TIAN Di (田地). Rock and Soil Classification Using PLS-DA and SVM Combined with a Laser-Induced Breakdown Spectroscopy Library[J]. Plasma Science and Technology, 2015, 17(8): 656-663. DOI: 10.1088/1009-0630/17/8/08
  • Cited by

    Periodical cited type(25)

    1. Wang, D., Xu, L., Gao, W. et al. Application of Semi-Supervised Learning Model to Coal Sample Classification. Applied Sciences (Switzerland), 2024, 14(4): 1606. DOI:10.3390/app14041606
    2. Sun, Y., Liu, L., Xiao, L. Application of Wavelet Threshold Denoising in LIBS Spectral Denoising. 2024. DOI:10.1109/EIT63098.2024.10762555
    3. Wu, L., Kim, S.K. Evaluating the economic and climate adaptation benefits of land conservation strategies in urban coastal regions of the U.S. and China. Climate Risk Management, 2024. DOI:10.1016/j.crm.2024.100632
    4. Dong, M., Cai, J., Liu, H. et al. A review of laser-induced breakdown spectroscopy and spontaneous emission techniques in monitoring thermal conversion of fuels. Spectrochimica Acta - Part B Atomic Spectroscopy, 2023. DOI:10.1016/j.sab.2023.106807
    5. Yang, L., Xiang, Y., Li, Y. et al. Identification and classification of recyclable waste using laser-induced breakdown spectroscopy technology. AIP Advances, 2023, 13(7): 075024. DOI:10.1063/5.0149329
    6. Xu, L., Shu, Q., Fu, H. et al. Estimation of Quercus Biomass in Shangri-La Based on GEDI Spaceborne Lidar Data. Forests, 2023, 14(5): 876. DOI:10.3390/f14050876
    7. Brunnbauer, L., Gajarska, Z., Lohninger, H. et al. A critical review of recent trends in sample classification using Laser-Induced Breakdown Spectroscopy (LIBS). TrAC - Trends in Analytical Chemistry, 2023. DOI:10.1016/j.trac.2022.116859
    8. Guan, C., Wu, T., Chen, J. et al. Detection of Carbon Content from Pulverized Coal Using LIBS Coupled with DSC-PLS Method. Chemosensors, 2022, 10(11): 490. DOI:10.3390/chemosensors10110490
    9. Zhang, Q., Liu, Y. Review of In-situ Online LIBS Detection in the Atmospheric Environment. Atomic Spectroscopy, 2022, 43(2): 174-185. DOI:10.46770/AS.2021.609
    10. Zhang, D., Zhang, H., Zhao, Y. et al. A brief review of new data analysis methods of laser-induced breakdown spectroscopy: machine learning. Applied Spectroscopy Reviews, 2022, 57(2): 89-111. DOI:10.1080/05704928.2020.1843175
    11. Kim, S.K., Bennett, M.M., van Gevelt, T. et al. Urban agglomeration worsens spatial disparities in climate adaptation. Scientific Reports, 2021, 11(1): 8446. DOI:10.1038/s41598-021-87739-1
    12. Song, Y., Song, W., Yu, X. et al. Improvement of sample discrimination using laser-induced breakdown spectroscopy with multiple-setting spectra. Analytica Chimica Acta, 2021. DOI:10.1016/j.aca.2021.339053
    13. Liu, K., He, C., Zhu, C. et al. A review of laser-induced breakdown spectroscopy for coal analysis. TrAC - Trends in Analytical Chemistry, 2021. DOI:10.1016/j.trac.2021.116357
    14. Teng, G., Wang, Q., Cui, X. et al. Predictive data clustering of laser-induced breakdown spectroscopy for brain tumor analysis. Biomedical Optics Express, 2021, 12(7): 4438-4451. DOI:10.1364/BOE.431356
    15. Yang, Y., Zhang, L., Hao, X. et al. Classification of iron ore based on machine learning and laser induced breakdown spectroscopy | [机器学习结合激光诱导击穿光谱技术铁矿石分类方法]. Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2021, 50(5): 20200490. DOI:10.3788/IRLA20200490
    16. Wang, C., Wang, J., Wang, J. et al. Classification of 13 original rock samples by laser induced breakdown spectroscopy. Laser Physics, 2021, 31(3): 035601. DOI:10.1088/1555-6611/abdfc8
    17. Jayaganthan, S., Babu, M.S., Vasa, N.J. et al. Classification of coal deposited epoxy micro-nanocomposites by adopting machine learning techniques to libs analysis. Journal of Physics Communications, 2021, 5(10): 105006. DOI:10.1088/2399-6528/ac2b5d
    18. Liu, X., Che, X., Li, K. et al. Geographical authenticity evaluation of Mentha haplocalyx by LIBS coupled with multivariate analyzes. Plasma Science and Technology, 2020, 22(7): 074006. DOI:10.1088/2058-6272/ab7eda
    19. Feng, Z., Zhang, D., Wang, B. et al. The classification of plants by laser-induced breakdown spectroscopy based on two chemometric methods. Plasma Science and Technology, 2020, 22(7): 074012. DOI:10.1088/2058-6272/ab84ed
    20. Dong, M., Wei, L., González, J.J. et al. Coal Discrimination Analysis Using Tandem Laser-Induced Breakdown Spectroscopy and Laser Ablation Inductively Coupled Plasma Time-of-Flight Mass Spectrometry. Analytical Chemistry, 2020, 92(10): 7003-7010. DOI:10.1021/acs.analchem.0c00188
    21. Yang, Y., Hao, X., Zhang, L. et al. Application of scikit and keras libraries for the classification of iron ore data acquired by laser-induced breakdown spectroscopy (LIBS). Sensors (Switzerland), 2020, 20(5): 1393. DOI:10.3390/s20051393
    22. Wang, Z., Hou, Z., Zhang, L. et al. Coal analysis. Laser-Induced Breakdown Spectroscopy, Second Edition, 2020. DOI:10.1016/B978-0-12-818829-3.00021-6
    23. Xia, W., Zeng, J., Long, Z. et al. Study on fracture fault diagnosis online method of bogie of maglev train. 2019. DOI:10.1109/CAC48633.2019.8996297
    24. Wang, Z., Wang, S., Kong, D. et al. Methane detection based on improved chicken algorithm optimization support vector machine. Applied Sciences (Switzerland), 2019, 9(9): 1761. DOI:10.3390/app9091761
    25. Fu, Y., Hou, Z., Deguchi, Y. et al. From big to strong: Growth of the Asian laser-induced breakdown spectroscopy community. Plasma Science and Technology, 2019, 21(3): 030101. DOI:10.1088/2058-6272/aaf873

    Other cited types(0)

Catalog

    Article views (159) PDF downloads (313) Cited by(25)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return