Citation: | Qingdong ZENG, Guanghui CHEN, Wenxin LI, Zitao LI, Juhong TONG, Mengtian YUAN, Boyun WANG, Honghua MA, Yang LIU, Lianbo GUO, Huaqing YU. Classification of steel based on laser-induced breakdown spectroscopy combined with restricted Boltzmann machine and support vector machine[J]. Plasma Science and Technology, 2022, 24(8): 084009. DOI: 10.1088/2058-6272/ac72e3 |
In recent years, a laser-induced breakdown spectrometer (LIBS) combined with machine learning has been widely developed for steel classification. However, the much redundant information of LIBS spectra increases the computation complexity for classification. In this work, restricted Boltzmann machines (RBM) and principal component analysis (PCA) were used for dimension reduction of datasets, respectively. Then, a support vector machine (SVM) was adopted to process feature information. Two models (RBM-SVM and PCA-SVM) are compared in terms of performance. After optimization, the accuracy of the RBM-SVM model can achieve 100%, and the maximum dimension reduction time is 33.18 s, which is nearly half of that of the PCA model (53.19 s). These results preliminarily indicate that LIBS combined with RBM-SVM has great potential in the real-time classification of steel.
This work was supported by National Natural Science Foundation of China (No. 61705064), the Natural Science Foundation of Hubei Province (No. 2021CFB607), theNatural Science Foundation of Xiaogan City (No. XGKJ202-1010003), and the Project of the Hubei Provincial Department of Education (No. T201617).
[1] |
Marco M et al 2020 J. Clean. Prod. 277 123293 doi: 10.1016/j.jclepro.2020.123293
|
[2] |
Harvey L D D et al 2021 Renew. Sustain. Energy Rev. 138 110553 doi: 10.1016/j.rser.2020.110553
|
[3] |
Chen T T et al 2020 Trends Anal. Chem. 133 116113 doi: 10.1016/j.trac.2020.116113
|
[4] |
Mesina M B et al 2007 Int. J. Miner. Process. 82 222 doi: 10.1016/j.minpro.2006.10.006
|
[5] |
Bengtson A et al 2017 Spectrochim. Acta B 134 123 doi: 10.1016/j.sab.2017.05.006
|
[6] |
Garcia M P et al 2021 Mater. Charact. 179 111308 doi: 10.1016/j.matchar.2021.111308
|
[7] |
Zeng Q D et al 2019 Plasma Sci. Technol. 21 034006 doi: 10.1088/2058-6272/aadede
|
[8] |
Zeng Q D et al 2020 Plasma Sci. Technol. 22 074013 doi: 10.1088/2058-6272/ab8a0b
|
[9] |
Wang Z et al 2021 Trends Anal. Chem. 143 116385 doi: 10.1016/j.trac.2021.116385
|
[10] |
Singh V K et al 2011 Lasers Med. Sci. 26 673 doi: 10.1007/s10103-011-0921-2
|
[11] |
Sezer B et al 2017 Trends Anal. Chem. 97 345 doi: 10.1016/j.trac.2017.10.003
|
[12] |
Lawley C J M et al 2021 J. Geochem. Explor. 222 106694 doi: 10.1016/j.gexplo.2020.106694
|
[13] |
Noll R et al 2018 J. Anal. At. Spectrom. 33 945 doi: 10.1039/C8JA00076J
|
[14] |
Song W et al 2021 Fuel 306 121667 doi: 10.1016/j.fuel.2021.121667
|
[15] |
Kim H et al 2021 Spectrochim. Acta B 184 106282 doi: 10.1016/j.sab.2021.106282
|
[16] |
Xia H et al 2014 Talanta 120 239 doi: 10.1016/j.talanta.2013.11.082
|
[17] |
Costa V C et al 2018 Trends Anal. Chem. 108 65 doi: 10.1016/j.trac.2018.08.003
|
[18] |
Afgan M S et al 2017 J. Anal. At. Spectrom. 32 1905 doi: 10.1039/C7JA00219J
|
[19] |
Pořízka P et al 2018 Spectrochim. Acta B 148 65 doi: 10.1016/j.sab.2018.05.030
|
[20] |
Shin S H et al 2019 Plasma Sci. Technol. 21 034011 doi: 10.1088/2058-6272/aaed6c
|
[21] |
Vors E, Tchepidjian K and Sirven J B 2016 Spectrochim. Acta B 117 16 doi: 10.1016/j.sab.2015.12.004
|
[22] |
Narla L M and Rao S V 2020 Appl. Phys. B 126 113 doi: 10.1007/s00340-020-07469-6
|
[23] |
Dong Y and Qin S J 2018 J. Process Control 67 1 doi: 10.1016/j.jprocont.2017.05.002
|
[24] |
Vrábel J, Pořízka P and Kaiser J 2020 Spectrochim. Acta B 167 105849 doi: 10.1016/j.sab.2020.105849
|
[25] |
Hinton G 2002 Neural Comput. 14 1771 doi: 10.1162/089976602760128018
|
[26] |
Lopes N and Ribeiro B 2014 Pattern Recognit. 47 114 doi: 10.1016/j.patcog.2013.06.029
|
[27] |
Sankaran A et al 2017 Pattern Recognit. 61 674 doi: 10.1016/j.patcog.2016.04.014
|
[28] |
Jing W et al 2018 Lasers Med. Sci. 33 1381 doi: 10.1007/s10103-018-2500-2
|
[29] |
Liang L et al 2014 Appl. Opt. 53 544 doi: 10.1364/AO.53.000544
|
[30] |
Cortes C and Vapnik V 1995 Mach. Learn. 20 273
|
[1] | Jie LONG, Weiran SONG, Zongyu HOU, Zhe WANG. A data selection method for matrix effects and uncertainty reduction for laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2023, 25(7): 075501. DOI: 10.1088/2058-6272/acb6dd |
[2] | Guodong WANG (王国栋), Lanxiang SUN (孙兰香), Wei WANG (汪为), Tong CHEN (陈彤), Meiting GUO (郭美亭), Peng ZHANG (张鹏). A feature selection method combined with ridge regression and recursive feature elimination in quantitative analysis of laser induced breakdown spectroscopy[J]. Plasma Science and Technology, 2020, 22(7): 74002-074002. DOI: 10.1088/2058-6272/ab76b4 |
[3] | Yaguang MEI (梅亚光), Shusen CHENG (程树森), Zhongqi HAO (郝中骐), Lianbo GUO (郭连波), Xiangyou LI (李祥友), Xiaoyan ZENG (曾晓雁), Junliang GE (葛军亮). Quantitative analysis of steel and iron by laser-induced breakdown spectroscopy using GA-KELM[J]. Plasma Science and Technology, 2019, 21(3): 34020-034020. DOI: 10.1088/2058-6272/aaf6f3 |
[4] | Liuyang ZHAN (詹浏洋), Xiaohong MA (马晓红), Weiqi FANG (方玮骐), Rui WANG (王锐), Zesheng LIU (刘泽生), Yang SONG (宋阳), Huafeng ZHAO (赵华凤). A rapid classification method of aluminum alloy based on laser-induced breakdown spectroscopy and random forest algorithm[J]. Plasma Science and Technology, 2019, 21(3): 34018-034018. DOI: 10.1088/2058-6272/aaf7bf |
[5] | Haobin PENG (彭浩斌), Guohua CHEN (陈国华), Xiaoxuan CHEN (陈小玄), Zhimin LU (卢志民), Shunchun YAO (姚顺春). Hybrid classification of coal and biomass by laser-induced breakdown spectroscopy combined with K-means and SVM[J]. Plasma Science and Technology, 2019, 21(3): 34008-034008. DOI: 10.1088/2058-6272/aaebc4 |
[6] | Dan LUO (罗丹), Ying LIU (刘英), Xiangyu LI (李香宇), Zhenyang ZHAO (赵珍阳), Shigong WANG (王世功), Yong ZHANG (张勇). Quantitative analysis of C, Si, Mn, Ni, Cr and Cu in low-alloy steel under ambient conditions via laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2018, 20(7): 75504-075504. DOI: 10.1088/2058-6272/aabc5d |
[7] | Ying LI (李颖), Yanhong GU (谷艳红), Ying ZHANG (张莹), Yuandong LI (李远东), Yuan LU (卢渊). Analytical study of seashell using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2017, 19(2): 25501-025501. DOI: 10.1088/2058-6272/19/2/025501 |
[8] | HE Li’ao (何力骜), WANG Qianqian (王茜蒨), ZHAO Yu (赵宇), LIU Li (刘莉), PENG Zhong (彭中). Study on Cluster Analysis Used with Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2016, 18(6): 647-653. DOI: 10.1088/1009-0630/18/6/11 |
[9] | WEN Guanhong(温冠宏), SUN Duixiong(孙对兄), SU Maogen(苏茂根), DONG Chenzhong(董晨钟). LIBS Detection of Heavy Metal Elements in Liquid Solutions by Using Wood Pellet as Sample Matrix[J]. Plasma Science and Technology, 2014, 16(6): 598-601. DOI: 10.1088/1009-0630/16/6/11 |
[10] | ZHAO Dongye(赵栋烨), FARID Nazar(纳扎), HAI Ran(海然), WU Ding(吴鼎), DING Hongbin(丁洪斌). Diagnostics of First Wall Materials in a Magnetically Confined Fusion Device by Polarization-Resolved Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2014, 16(2): 149-154. DOI: 10.1088/1009-0630/16/2/11 |
1. | Betlej, I., Skrzeczanowski, W., Nasiłowska, B. et al. Application of Laser-Induced Breakdown Spectroscopy (LIBS) as an Attempt to Determine Graphene Oxide Incorporation on Wood Surfaces. Coatings, 2025, 15(1): 34. DOI:10.3390/coatings15010034 |
2. | Lyu, Y., Song, W., Hou, Z. et al. Incorporating empirical knowledge into data-driven variable selection for quantitative analysis of coal ash content by laser-induced breakdown spectroscopy. Plasma Science and Technology, 2024, 26(7): 075509. DOI:10.1088/2058-6272/ad370c |
3. | Xu, X., Teng, G., Wang, Q. et al. Accuracy Enhancement of Glioma Boundary Tissue Identification by Polarization-resolved LIBS Spectral Fusion. Atomic Spectroscopy, 2024, 45(3): 216-225. DOI:10.46770/AS.2024.101 |
4. | Ali, Z., Jamil, Y., Anwar, H. et al. Classification of e-waste using machine learning-assisted laser-induced breakdown spectroscopy. Waste Management and Research, 2024. DOI:10.1177/0734242X241248730 |
5. | Sarafis, A., Gerodimos, T., Kechaoglou, E. et al. Identification of wood specimens utilizing fs-LIBS and machine learning techniques. EPJ Applied Physics, 2024. DOI:10.1051/epjap/2024230215 |
6. | Huang, Y., Bais, A., Hussein, A.E. Domain Adaptation Using Class-Balanced Self-Paced Learning for Soil Classification with LIBS. IEEE Transactions on Plasma Science, 2023, 51(9): 2742-2755. DOI:10.1109/TPS.2023.3305559 |
7. | Wei, K., Teng, G., Wang, Q. et al. Rapid Test for Adulteration of Fritillaria Thunbergii in Fritillaria Cirrhosa by Laser-Induced Breakdown Spectroscopy. Foods, 2023, 12(8): 1710. DOI:10.3390/foods12081710 |
8. | Jiang, H., Ji, X., Yang, Y. et al. Vibration Signal Analysis of Roadheader Based on Referential Manifold Learning. Shock and Vibration, 2023. DOI:10.1155/2023/8818380 |
9. | He, Y., Zhang, Y., Ke, C. et al. Optical Scanning Analysis of Static Samples by Compact Laser Induced Breakdown Spectroscopy. IEEE Transactions on Instrumentation and Measurement, 2023. DOI:10.1109/TIM.2023.3300425 |
10. | Xu, X., Teng, G., Wang, Q. et al. Spectral preprocessing combined with feature selection improve model robustness for plastics samples classification by LIBS. Frontiers in Environmental Science, 2023. DOI:10.3389/fenvs.2023.1175392 |
11. | He, J., Sun, Y., Yu, C. et al. An Improved Wood Recognition Method Based on the One-Class Algorithm. Forests, 2022, 13(9): 1350. DOI:10.3390/f13091350 |
12. | He, Y., Xu, T., Zhang, Y. et al. Quantitative analysis and time-resolved characterization of simulated tokamak exhaust gas by laser-induced breakdown spectroscopy. Plasma Science and Technology, 2022, 24(4): 045506. DOI:10.1088/2058-6272/ac45e4 |
13. | Pratondo, A., Novianty, A. Comparison of Wood Classification using Machine Learning. 2022. DOI:10.1109/ICSPC55597.2022.10001776 |
14. | Liu, Z., Hao, J., Yang, D. et al. A Novel Reformed Reduced Kernel Extreme Learning Machine with RELIEF-F for Classification. Computational Intelligence and Neuroscience, 2022. DOI:10.1155/2022/4795535 |
15. | Ji, X., Yang, Y., Qu, Y. et al. Health Diagnosis of Roadheader Based on Reference Manifold Learning and Improved K -Means. Shock and Vibration, 2021. DOI:10.1155/2021/6311795 |