Citation: | Chengxu LU (吕程序), Bo WANG (王博), Xunpeng JIANG (姜训鹏), Junning ZHANG (张俊宁), Kang NIU (牛康), Yanwei YUAN (苑严伟). Detection of K in soil using time-resolved laser-induced breakdown spectroscopy based on convolutional neural networks[J]. Plasma Science and Technology, 2019, 21(3): 34014-034014. DOI: 10.1088/2058-6272/aaef6e |
[1] |
Chérel I et al 2014 J. Exp. Bot. 65 833
|
[2] |
ISO 2009 Soil quality—Determination of trace elements in extracts of soil by ICP –AES: ISO 22036 2008 https://iso. org/standard/40653.html
|
[3] |
ISO 2013 Soil quality—Determination of trace elements using ICP-MS: ISO/TS 16965 2013 https://iso.org/standard/ 58056.html
|
[4] |
Hussain T et al 2007 Environ. Monit. Assess. 124 131
|
[5] |
Pareja J et al 2013 Appl. Opt. 52 2470
|
[6] |
Meng D S et al 2014 Chin. J. Lasers 41 0515003 (in Chinese)
|
[7] |
Dong D M et al 2013 Spectrosc. Spectr. Anal. 33 785 (in Chinese)
|
[8] |
Zhang J N et al 2014 Trans. Chin. Soc. Agric. Mach. 45 294 (in Chinese)
|
[9] |
Yu K et al 2017 Spectrosc. Spectr. Anal. 37 2879 (in Chinese)
|
[10] |
Guezenoc J et al 2017 Spectrochim. Acta Part B 134 6
|
[11] |
El Rakwe M et al 2017 J. Chemom. 31 e2869
|
[12] |
Noll R 2012 Laser-Induced Breakdown Spectroscopy (Berlin, Heidelberg: Springer)
|
[13] |
Bredice F et al 2017 Spectrochim. Acta Part B 135 48
|
[14] |
Rawat W and Wang Z H 2017 Neur. Comput. 29 2352
|
[15] |
Yao G L, Lei T and Zhong J D 2018 Patt. Recognit. Lett. (https://doi.org/10.1016/j.patrec.2018.05.018)
|
[16] |
Liu J C et al 2017 Analyst 142 4067
|
[17] |
Hiwa S et al 2016 Comput. Intell. Neurosci. 2016 1841945
|
[18] |
Windrim L et al 2017 IEEE Trans. Geosci. Remote Sens. 56 2798
|
[19] |
Snee R D 1977 Technometrics 19 415
|
[20] |
Wang C et al 2018 Spectrosc. Spectr. Anal. 38 36 (in Chinese)
|
[21] |
Kim P 2017 MATLAB Deep Learning: with Machine Learning, Neural Networks and Artificial Intelligence (Berkeley, CA: Springer)
|
[22] |
Glotot X and Bengio Y 2010 Understanding the difficulty of training deep feedforward neural networks Proc. of the 13th Int. Conf. on Artificial Intelligence and Statistics (Chia Laguna Resort, Sardinia, Italy: AISTATS)
|
[23] |
Maas A L, Hannun A Y and Ng A Y 2013 Rectifier nonlinearities improve neural network acoustic models Proc. of the 30th Int. Conf. on Machine Learning Workshop on Deep Learning (Atlanta, GA, USA: ICML)
|
[1] | Xueqiang CAO (曹学强), Li ZHANG (张立), Zhongchen WU (武中臣), Zongcheng LING (凌宗成), Jialun LI (李加伦), Kaichen GUO (郭恺琛). Quantitative analysis modeling for the ChemCam spectral data based on laser-induced breakdown spectroscopy using convolutional neural network[J]. Plasma Science and Technology, 2020, 22(11): 115502. DOI: 10.1088/2058-6272/aba5f6 |
[2] | Qiuyun WANG (王秋云), Anmin CHEN (陈安民), Wanpeng XU (徐万鹏), Dan ZHANG (张丹), Ying WANG (王莹), Suyu LI (李苏宇), Yuanfei JIANG (姜远飞), Mingxing JIN (金明星). Time-resolved spectroscopy of femtosecond laser-induced Cu plasma with spark discharge[J]. Plasma Science and Technology, 2019, 21(6): 65504-065504. DOI: 10.1088/2058-6272/ab0fa6 |
[3] | Congyuan PAN (潘从元), Jiao HE (何娇), Guangqian WANG (王广谦), Xuewei DU (杜学维), Yongbin LIU (刘永斌), Yahui SU (苏亚辉). An efficient procedure in quantitative analysis using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2019, 21(3): 34012-034012. DOI: 10.1088/2058-6272/aaf50f |
[4] | Haobin PENG (彭浩斌), Guohua CHEN (陈国华), Xiaoxuan CHEN (陈小玄), Zhimin LU (卢志民), Shunchun YAO (姚顺春). Hybrid classification of coal and biomass by laser-induced breakdown spectroscopy combined with K-means and SVM[J]. Plasma Science and Technology, 2019, 21(3): 34008-034008. DOI: 10.1088/2058-6272/aaebc4 |
[5] | Manjeet SINGH, Arnab SARKAR. Time-resolved evaluation of uranium plasma in different atmospheres by laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2018, 20(12): 125501. DOI: 10.1088/2058-6272/aad866 |
[6] | Yangmin GUO (郭阳敏), Yun TANG (唐云), Yu DU (杜宇), Shisong TANG (唐仕松), Lianbo GUO (郭连波), Xiangyou LI (李祥友), Yongfeng LU (陆永枫), Xiaoyan ZENG (曾晓雁). Cluster analysis of polymers using laser-induced breakdown spectroscopy with K-means[J]. Plasma Science and Technology, 2018, 20(6): 65505-065505. DOI: 10.1088/2058-6272/aaaade |
[7] | Ali KHUMAENI, Wahyu Setia BUDI, Asep Yoyo WARDAYA, Rinda HEDWIG, Koo Hendrik KURNIAWAN. Rapid Detection of Oil Pollution in Soil by Using Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2016, 18(12): 1186-1191. DOI: 10.1088/1009-0630/18/12/08 |
[8] | HE Li’ao (何力骜), WANG Qianqian (王茜蒨), ZHAO Yu (赵宇), LIU Li (刘莉), PENG Zhong (彭中). Study on Cluster Analysis Used with Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2016, 18(6): 647-653. DOI: 10.1088/1009-0630/18/6/11 |
[9] | DING Yonghua (丁永华), JIN Xuesong (金雪松), CHEN Zhenzhen (陈真真), ZHUANG Ge (庄革). Neural Network Prediction of Disruptions Caused by Locked Modes on J-TEXT Tokamak[J]. Plasma Science and Technology, 2013, 15(11): 1154-1159. DOI: 10.1088/1009-0630/15/11/14 |
[10] | M. L. SHAH, A. K. PULHANI, B. M. SURI, G. P. GUPTA. Time-Resolved Emission Spectroscopic Study of Laser-Induced Steel Plasmas[J]. Plasma Science and Technology, 2013, 15(6): 546-551. DOI: 10.1088/1009-0630/15/6/11 |
1. | Krishna, A.S., Kumar, S.P. An Augmented Classification for Reducing Effluent from Hydrocarbon and Nox Levels Using Support Vector Machine Over Ensemble Decision Tree. AIP Conference Proceedings, 2025, 3252(1): 020200. DOI:10.1063/5.0258813 | |
2. | Fang, X., Yu, H., Huang, Q. et al. Full-spectrum LIBS quantitative analysis based on heterogeneous ensemble learning model. Chemometrics and Intelligent Laboratory Systems, 2025. DOI:10.1016/j.chemolab.2025.105321 | |
3. | Han, W., Sun, D., Zhang, G. et al. Research on batch multielement rapid quantitative analysis based on the standard curve-assisted calibration-free laser-induced breakdown spectroscopy method. Plasma Science and Technology, 2024, 26(9): 095502. DOI:10.1088/2058-6272/ad5119 | |
4. | Zhou, F., Xie, W., Lin, M. et al. Rapid authentication of geographical origins of Baishao (Radix Paeoniae Alba) slices with laser-induced breakdown spectroscopy based on conventional machine learning and deep learning. Spectrochimica Acta - Part B Atomic Spectroscopy, 2024. DOI:10.1016/j.sab.2023.106852 | |
5. | Huang, Y., Mohajan, S., Beier, N.F. et al. Adaptive Learning for Soil Classification in Laser-Induced Breakdown Spectroscopy Streaming. IEEE Transactions on Artificial Intelligence, 2024, 5(7): 3714-3727. DOI:10.1109/TAI.2024.3375260 | |
6. | Wang, H., Xin, Y., Fang, P. et al. Quantitative Analysis of Meteorite Elements Based on the Multidimensional Scaling–Back Propagation Neural Network Algorithm Combined with Raman Mapping-Assisted Micro-Laser Induced Breakdown Spectroscopy. Chemosensors, 2023, 11(11): 567. DOI:10.3390/chemosensors11110567 | |
7. | Zhang, C., Zhou, L., Liu, F. et al. Application of deep learning in laser-induced breakdown spectroscopy: a review. Artificial Intelligence Review, 2023. DOI:10.1007/s10462-023-10590-5 | |
8. | Kong, W., Zeng, L., Rao, Y. et al. Laser-induced Breakdown Spectroscopy Based on Pre-classification Strategy for Quantitative Analysis of Rock Samples | [基于预分类策略的激光诱导击穿光谱技术用于岩石样品定量分析]. Yankuang Ceshi, 2023, 42(4): 760-770. DOI:10.15898/j.ykcs.202212190234 | |
9. | Huang, Y., Harilal, S.S., Bais, A. et al. Progress Toward Machine Learning Methodologies for Laser-Induced Breakdown Spectroscopy With an Emphasis on Soil Analysis. IEEE Transactions on Plasma Science, 2023, 51(7): 1729-1749. DOI:10.1109/TPS.2022.3231985 | |
10. | Srivastava, E., Kim, H., Lee, J. et al. Quantitative analysis of metal scraps using laser-induced breakdown spectroscopy measurements via unsupervised adversarial domain adaptation. Chemometrics and Intelligent Laboratory Systems, 2022. DOI:10.1016/j.chemolab.2022.104667 | |
11. | Yang, F., Xu, W., Cui, Z. et al. Convolutional Neural Network Chemometrics for Rock Identification Based on Laser-Induced Breakdown Spectroscopy Data in Tianwen-1 Pre-Flight Experiments. Remote Sensing, 2022, 14(21): 5343. DOI:10.3390/rs14215343 | |
12. | Han, P.-C., Yang, K., Jiao, L.-Z. et al. Rapid quantitative analysis of potassium in soil based on direct-focused laser ablation-laser induced breakdown spectroscopy. Frontiers in Chemistry, 2022. DOI:10.3389/fchem.2022.967158 | |
13. | Poggialini, F., Campanella, B., Legnaioli, S. et al. Comparison of Convolutional and Conventional Artificial Neural Networks for Laser-Induced Breakdown Spectroscopy Quantitative Analysis. Applied Spectroscopy, 2022, 76(8): 959-966. DOI:10.1177/00037028221091300 | |
14. | Huang, Y., Bais, A. A novel PCA-based calibration algorithm for classification of challenging laser-induced breakdown spectroscopy soil sample data. Spectrochimica Acta - Part B Atomic Spectroscopy, 2022. DOI:10.1016/j.sab.2022.106451 | |
15. | Davari, S.A., Mukherjee, D. Deep Learning Models for Data-Driven Laser Induced Breakdown Spectroscopy (LIBS) Analysis of Interstitial Oxygen Impurities in Czochralski-Si Crystals. Applied Spectroscopy, 2022, 76(6): 667-677. DOI:10.1177/00037028221085640 | |
16. | Ren, J., Zhao, Y., Yu, K. LIBS in agriculture: A review focusing on revealing nutritional and toxic elements in soil, water, and crops. Computers and Electronics in Agriculture, 2022. DOI:10.1016/j.compag.2022.106986 | |
17. | Yang, F., Li, L.-N., Xu, W.-M. et al. Laser-induced breakdown spectroscopy combined with a convolutional neural network: A promising methodology for geochemical sample identification in Tianwen-1 Mars mission. Spectrochimica Acta - Part B Atomic Spectroscopy, 2022. DOI:10.1016/j.sab.2022.106417 | |
18. | Ytsma, C.R., Dyar, M.D. Calculations of and effects on quantitative limits for multivariate analyses of geological materials with laser-induced breakdown spectroscopy. Spectrochimica Acta - Part B Atomic Spectroscopy, 2022. DOI:10.1016/j.sab.2022.106395 | |
19. | Chen, S., Pei, H., Pisonero, J. et al. Simultaneous determination of lithology and major elements in rocks using laser-induced breakdown spectroscopy (LIBS) coupled with a deep convolutional neural network. Journal of Analytical Atomic Spectrometry, 2022, 37(3): 508-516. DOI:10.1039/d1ja00406a | |
20. | Castro, J.P., Machado, R.C., Andrade, D.F. et al. Quantitative Analysis. Laser-Induced Breakdown Spectroscopy in Biological, Forensic and Materials Sciences, 2022. DOI:10.1007/978-3-031-14502-5_2 | |
21. | Kugaevskikh, A.V.. COVID-19 Screening Based on Application of Neural Network Classification of Exhale Spectra. 2022. DOI:10.1109/NeuroNT55429.2022.9805563 | |
22. | Xing, P., Dong, J., Yu, P. et al. Quantitative analysis of lithium in brine by laser-induced breakdown spectroscopy based on convolutional neural network. Analytica Chimica Acta, 2021. DOI:10.1016/j.aca.2021.338799 | |
23. | Zhao, W.-Y., Min, H., Liu, S. et al. Application Progress of Artificial Neural Network in Laser-Induced Breakdown Spectral Data Analysis | [人工神经网络在激光诱导击穿光谱数据分析中的应用进展]. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 2021, 41(7): 1998-2004. DOI:10.3964/j.issn.1000-0593(2021)07-1998-07 | |
24. | Li, L.-N., Liu, X.-F., Yang, F. et al. A review of artificial neural network based chemometrics applied in laser-induced breakdown spectroscopy analysis. Spectrochimica Acta - Part B Atomic Spectroscopy, 2021. DOI:10.1016/j.sab.2021.106183 | |
25. | Han, L., Liu, F., Zhang, L. An improved sub-model plsr quantitative analysis method based on svm classifier for chemcam laser-induced breakdown spectroscopy. Symmetry, 2021, 13(2): 1-13. DOI:10.3390/sym13020319 | |
26. | Zou, L., Sun, C., Wu, M. et al. Online simultaneous determination of H2O and KCl in potash with LIBS coupled to convolutional and back-propagation neural networks. Journal of Analytical Atomic Spectrometry, 2021, 36(2): 303-313. DOI:10.1039/d0ja00431f | |
27. | Cao, X., Zhang, L., Wu, Z. et al. Quantitative analysis modeling for the ChemCam spectral data based on laser-induced breakdown spectroscopy using convolutional neural network. Plasma Science and Technology, 2020, 22(11): 115502. DOI:10.1088/2058-6272/aba5f6 | |
28. | Ali Davari, S., Wexler, A.S. Quantification of toxic metals using machine learning techniques and spark emission spectroscopy. Atmospheric Measurement Techniques, 2020, 13(10): 5369-5377. DOI:10.5194/amt-13-5369-2020 | |
29. | Li, L.-N., Liu, X.-F., Xu, W.-M. et al. A laser-induced breakdown spectroscopy multi-component quantitative analytical method based on a deep convolutional neural network. Spectrochimica Acta - Part B Atomic Spectroscopy, 2020. DOI:10.1016/j.sab.2020.105850 | |
30. | Zhao, M., Yan, C., Feng, Y. et al. A novel strategy for quantitative analysis of soil pH via laser-induced breakdown spectroscopy coupled with random forest. Plasma Science and Technology, 2020, 22(7): 074003. DOI:10.1088/2058-6272/ab6ac2 | |
31. | Ding, Y., Zhang, W., Zhao, X. et al. A hybrid random forest method fusing wavelet transform and variable importance for the quantitative analysis of K in potassic salt ore using laser-induced breakdown spectroscopy. Journal of Analytical Atomic Spectrometry, 2020, 35(6): 1131-1138. DOI:10.1039/d0ja00010h | |
32. | Chen, J., Pisonero, J., Chen, S. et al. Convolutional neural network as a novel classification approach for laser-induced breakdown spectroscopy applications in lithological recognition. Spectrochimica Acta - Part B Atomic Spectroscopy, 2020. DOI:10.1016/j.sab.2020.105801 | |
33. | Costa, V.C., Babos, D.V., Castro, J.P. et al. Calibration strategies applied to laser-induced breakdown spectroscopy: A critical review of advances and challenges. Journal of the Brazilian Chemical Society, 2020, 31(12): 2439-2451. DOI:10.21577/0103-5053.20200175 | |
34. | Bacon, J.R., Butler, O.T., Cairns, W.R.L. et al. Atomic spectrometry update-a review of advances in environmental analysis. Journal of Analytical Atomic Spectrometry, 2020, 35(1): 9-53. DOI:10.1039/c9ja90060h | |
35. | Duan, H., Han, L., Huang, G. Quantitative analysis of major metals in agricultural biochar using laser-induced breakdown spectroscopy with an AdaBoost artificial neural network algorithm. Molecules, 2019, 24(20): 3753. DOI:10.3390/molecules24203753 | |
36. | Guo, K., Chen, A., Xu, W. et al. Effect of sample temperature on time-resolved laser-induced breakdown spectroscopy. AIP Advances, 2019, 9(6): 065214. DOI:10.1063/1.5097301 | |
37. | Fu, Y., Hou, Z., Deguchi, Y. et al. From big to strong: Growth of the Asian laser-induced breakdown spectroscopy community. Plasma Science and Technology, 2019, 21(3): 030101. DOI:10.1088/2058-6272/aaf873 |