Advanced Search+
Chengxu LU (吕程序), Bo WANG (王博), Xunpeng JIANG (姜训鹏), Junning ZHANG (张俊宁), Kang NIU (牛康), Yanwei YUAN (苑严伟). Detection of K in soil using time-resolved laser-induced breakdown spectroscopy based on convolutional neural networks[J]. Plasma Science and Technology, 2019, 21(3): 34014-034014. DOI: 10.1088/2058-6272/aaef6e
Citation: Chengxu LU (吕程序), Bo WANG (王博), Xunpeng JIANG (姜训鹏), Junning ZHANG (张俊宁), Kang NIU (牛康), Yanwei YUAN (苑严伟). Detection of K in soil using time-resolved laser-induced breakdown spectroscopy based on convolutional neural networks[J]. Plasma Science and Technology, 2019, 21(3): 34014-034014. DOI: 10.1088/2058-6272/aaef6e

Detection of K in soil using time-resolved laser-induced breakdown spectroscopy based on convolutional neural networks

Funds: This work is supported by National Natural Science Foundation of China (Grant No. 61505253) and National Key Research and Development Plan of China (Project No. 2016YFD0200601).
More Information
  • Received Date: July 30, 2018
  • One of the technical bottlenecks of traditional laser-induced breakdown spectroscopy (LIBS) is the difficulty in quantitative detection caused by the matrix effect. To troubleshoot this problem, this paper investigated a combination of time-resolved LIBS and convolutional neural networks (CNNs) to improve K determination in soil. The time-resolved LIBS contained the information of both wavelength and time dimension. The spectra of wavelength dimension showed the characteristic emission lines of elements, and those of time dimension presented the plasma decay trend. The one-dimensional data of LIBS intensity from the emission line at 766.49 nm were extracted and correlated with the K concentration, showing a poor correlation of R2c=0.0967, which is caused by the matrix effect of heterogeneous soil. For the wavelength dimension, the two-dimensional data of traditional integrated LIBS were extracted and analyzed by an artificial neural network (ANN), showing R2v=0.6318 and the root mean square error of validation (RMSEV)=0.6234. For the time dimension, the two-dimensional data of time-decay LIBS were extracted and analyzed by ANN, showing R2v=0.7366 and RMSEV=0.7855. These higher determination coefficients reveal that both the non-K emission lines of wavelength dimension and the spectral decay of time dimension could assist in quantitative detection of K. However, due to limited calibration samples, the two-dimensional models presented over-fitting. The three-dimensional data of time-resolved LIBS were analyzed by CNNs, which extracted and integrated the information of both the wavelength and time dimension, showing the R2v=0.9968 and RMSEV=0.0785. CNN analysis of time-resolved LIBS is capable of improving the determination of K in soil.
  • [1]
    Chérel I et al 2014 J. Exp. Bot. 65 833
    [2]
    ISO 2009 Soil quality—Determination of trace elements in extracts of soil by ICP –AES: ISO 22036 2008 https://iso. org/standard/40653.html
    [3]
    ISO 2013 Soil quality—Determination of trace elements using ICP-MS: ISO/TS 16965 2013 https://iso.org/standard/ 58056.html
    [4]
    Hussain T et al 2007 Environ. Monit. Assess. 124 131
    [5]
    Pareja J et al 2013 Appl. Opt. 52 2470
    [6]
    Meng D S et al 2014 Chin. J. Lasers 41 0515003 (in Chinese)
    [7]
    Dong D M et al 2013 Spectrosc. Spectr. Anal. 33 785 (in Chinese)
    [8]
    Zhang J N et al 2014 Trans. Chin. Soc. Agric. Mach. 45 294 (in Chinese)
    [9]
    Yu K et al 2017 Spectrosc. Spectr. Anal. 37 2879 (in Chinese)
    [10]
    Guezenoc J et al 2017 Spectrochim. Acta Part B 134 6
    [11]
    El Rakwe M et al 2017 J. Chemom. 31 e2869
    [12]
    Noll R 2012 Laser-Induced Breakdown Spectroscopy (Berlin, Heidelberg: Springer)
    [13]
    Bredice F et al 2017 Spectrochim. Acta Part B 135 48
    [14]
    Rawat W and Wang Z H 2017 Neur. Comput. 29 2352
    [15]
    Yao G L, Lei T and Zhong J D 2018 Patt. Recognit. Lett. (https://doi.org/10.1016/j.patrec.2018.05.018)
    [16]
    Liu J C et al 2017 Analyst 142 4067
    [17]
    Hiwa S et al 2016 Comput. Intell. Neurosci. 2016 1841945
    [18]
    Windrim L et al 2017 IEEE Trans. Geosci. Remote Sens. 56 2798
    [19]
    Snee R D 1977 Technometrics 19 415
    [20]
    Wang C et al 2018 Spectrosc. Spectr. Anal. 38 36 (in Chinese)
    [21]
    Kim P 2017 MATLAB Deep Learning: with Machine Learning, Neural Networks and Artificial Intelligence (Berkeley, CA: Springer)
    [22]
    Glotot X and Bengio Y 2010 Understanding the difficulty of training deep feedforward neural networks Proc. of the 13th Int. Conf. on Artificial Intelligence and Statistics (Chia Laguna Resort, Sardinia, Italy: AISTATS)
    [23]
    Maas A L, Hannun A Y and Ng A Y 2013 Rectifier nonlinearities improve neural network acoustic models Proc. of the 30th Int. Conf. on Machine Learning Workshop on Deep Learning (Atlanta, GA, USA: ICML)
  • Related Articles

    [1]Xueqiang CAO (曹学强), Li ZHANG (张立), Zhongchen WU (武中臣), Zongcheng LING (凌宗成), Jialun LI (李加伦), Kaichen GUO (郭恺琛). Quantitative analysis modeling for the ChemCam spectral data based on laser-induced breakdown spectroscopy using convolutional neural network[J]. Plasma Science and Technology, 2020, 22(11): 115502. DOI: 10.1088/2058-6272/aba5f6
    [2]Qiuyun WANG (王秋云), Anmin CHEN (陈安民), Wanpeng XU (徐万鹏), Dan ZHANG (张丹), Ying WANG (王莹), Suyu LI (李苏宇), Yuanfei JIANG (姜远飞), Mingxing JIN (金明星). Time-resolved spectroscopy of femtosecond laser-induced Cu plasma with spark discharge[J]. Plasma Science and Technology, 2019, 21(6): 65504-065504. DOI: 10.1088/2058-6272/ab0fa6
    [3]Congyuan PAN (潘从元), Jiao HE (何娇), Guangqian WANG (王广谦), Xuewei DU (杜学维), Yongbin LIU (刘永斌), Yahui SU (苏亚辉). An efficient procedure in quantitative analysis using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2019, 21(3): 34012-034012. DOI: 10.1088/2058-6272/aaf50f
    [4]Haobin PENG (彭浩斌), Guohua CHEN (陈国华), Xiaoxuan CHEN (陈小玄), Zhimin LU (卢志民), Shunchun YAO (姚顺春). Hybrid classification of coal and biomass by laser-induced breakdown spectroscopy combined with K-means and SVM[J]. Plasma Science and Technology, 2019, 21(3): 34008-034008. DOI: 10.1088/2058-6272/aaebc4
    [5]Manjeet SINGH, Arnab SARKAR. Time-resolved evaluation of uranium plasma in different atmospheres by laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2018, 20(12): 125501. DOI: 10.1088/2058-6272/aad866
    [6]Yangmin GUO (郭阳敏), Yun TANG (唐云), Yu DU (杜宇), Shisong TANG (唐仕松), Lianbo GUO (郭连波), Xiangyou LI (李祥友), Yongfeng LU (陆永枫), Xiaoyan ZENG (曾晓雁). Cluster analysis of polymers using laser-induced breakdown spectroscopy with K-means[J]. Plasma Science and Technology, 2018, 20(6): 65505-065505. DOI: 10.1088/2058-6272/aaaade
    [7]Ali KHUMAENI, Wahyu Setia BUDI, Asep Yoyo WARDAYA, Rinda HEDWIG, Koo Hendrik KURNIAWAN. Rapid Detection of Oil Pollution in Soil by Using Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2016, 18(12): 1186-1191. DOI: 10.1088/1009-0630/18/12/08
    [8]HE Li’ao (何力骜), WANG Qianqian (王茜蒨), ZHAO Yu (赵宇), LIU Li (刘莉), PENG Zhong (彭中). Study on Cluster Analysis Used with Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2016, 18(6): 647-653. DOI: 10.1088/1009-0630/18/6/11
    [9]DING Yonghua (丁永华), JIN Xuesong (金雪松), CHEN Zhenzhen (陈真真), ZHUANG Ge (庄革). Neural Network Prediction of Disruptions Caused by Locked Modes on J-TEXT Tokamak[J]. Plasma Science and Technology, 2013, 15(11): 1154-1159. DOI: 10.1088/1009-0630/15/11/14
    [10]M. L. SHAH, A. K. PULHANI, B. M. SURI, G. P. GUPTA. Time-Resolved Emission Spectroscopic Study of Laser-Induced Steel Plasmas[J]. Plasma Science and Technology, 2013, 15(6): 546-551. DOI: 10.1088/1009-0630/15/6/11
  • Cited by

    Periodical cited type(37)

    1. Krishna, A.S., Kumar, S.P. An Augmented Classification for Reducing Effluent from Hydrocarbon and Nox Levels Using Support Vector Machine Over Ensemble Decision Tree. AIP Conference Proceedings, 2025, 3252(1): 020200. DOI:10.1063/5.0258813
    2. Fang, X., Yu, H., Huang, Q. et al. Full-spectrum LIBS quantitative analysis based on heterogeneous ensemble learning model. Chemometrics and Intelligent Laboratory Systems, 2025. DOI:10.1016/j.chemolab.2025.105321
    3. Han, W., Sun, D., Zhang, G. et al. Research on batch multielement rapid quantitative analysis based on the standard curve-assisted calibration-free laser-induced breakdown spectroscopy method. Plasma Science and Technology, 2024, 26(9): 095502. DOI:10.1088/2058-6272/ad5119
    4. Zhou, F., Xie, W., Lin, M. et al. Rapid authentication of geographical origins of Baishao (Radix Paeoniae Alba) slices with laser-induced breakdown spectroscopy based on conventional machine learning and deep learning. Spectrochimica Acta - Part B Atomic Spectroscopy, 2024. DOI:10.1016/j.sab.2023.106852
    5. Huang, Y., Mohajan, S., Beier, N.F. et al. Adaptive Learning for Soil Classification in Laser-Induced Breakdown Spectroscopy Streaming. IEEE Transactions on Artificial Intelligence, 2024, 5(7): 3714-3727. DOI:10.1109/TAI.2024.3375260
    6. Wang, H., Xin, Y., Fang, P. et al. Quantitative Analysis of Meteorite Elements Based on the Multidimensional Scaling–Back Propagation Neural Network Algorithm Combined with Raman Mapping-Assisted Micro-Laser Induced Breakdown Spectroscopy. Chemosensors, 2023, 11(11): 567. DOI:10.3390/chemosensors11110567
    7. Zhang, C., Zhou, L., Liu, F. et al. Application of deep learning in laser-induced breakdown spectroscopy: a review. Artificial Intelligence Review, 2023. DOI:10.1007/s10462-023-10590-5
    8. Kong, W., Zeng, L., Rao, Y. et al. Laser-induced Breakdown Spectroscopy Based on Pre-classification Strategy for Quantitative Analysis of Rock Samples | [基于预分类策略的激光诱导击穿光谱技术用于岩石样品定量分析]. Yankuang Ceshi, 2023, 42(4): 760-770. DOI:10.15898/j.ykcs.202212190234
    9. Huang, Y., Harilal, S.S., Bais, A. et al. Progress Toward Machine Learning Methodologies for Laser-Induced Breakdown Spectroscopy With an Emphasis on Soil Analysis. IEEE Transactions on Plasma Science, 2023, 51(7): 1729-1749. DOI:10.1109/TPS.2022.3231985
    10. Srivastava, E., Kim, H., Lee, J. et al. Quantitative analysis of metal scraps using laser-induced breakdown spectroscopy measurements via unsupervised adversarial domain adaptation. Chemometrics and Intelligent Laboratory Systems, 2022. DOI:10.1016/j.chemolab.2022.104667
    11. Yang, F., Xu, W., Cui, Z. et al. Convolutional Neural Network Chemometrics for Rock Identification Based on Laser-Induced Breakdown Spectroscopy Data in Tianwen-1 Pre-Flight Experiments. Remote Sensing, 2022, 14(21): 5343. DOI:10.3390/rs14215343
    12. Han, P.-C., Yang, K., Jiao, L.-Z. et al. Rapid quantitative analysis of potassium in soil based on direct-focused laser ablation-laser induced breakdown spectroscopy. Frontiers in Chemistry, 2022. DOI:10.3389/fchem.2022.967158
    13. Poggialini, F., Campanella, B., Legnaioli, S. et al. Comparison of Convolutional and Conventional Artificial Neural Networks for Laser-Induced Breakdown Spectroscopy Quantitative Analysis. Applied Spectroscopy, 2022, 76(8): 959-966. DOI:10.1177/00037028221091300
    14. Huang, Y., Bais, A. A novel PCA-based calibration algorithm for classification of challenging laser-induced breakdown spectroscopy soil sample data. Spectrochimica Acta - Part B Atomic Spectroscopy, 2022. DOI:10.1016/j.sab.2022.106451
    15. Davari, S.A., Mukherjee, D. Deep Learning Models for Data-Driven Laser Induced Breakdown Spectroscopy (LIBS) Analysis of Interstitial Oxygen Impurities in Czochralski-Si Crystals. Applied Spectroscopy, 2022, 76(6): 667-677. DOI:10.1177/00037028221085640
    16. Ren, J., Zhao, Y., Yu, K. LIBS in agriculture: A review focusing on revealing nutritional and toxic elements in soil, water, and crops. Computers and Electronics in Agriculture, 2022. DOI:10.1016/j.compag.2022.106986
    17. Yang, F., Li, L.-N., Xu, W.-M. et al. Laser-induced breakdown spectroscopy combined with a convolutional neural network: A promising methodology for geochemical sample identification in Tianwen-1 Mars mission. Spectrochimica Acta - Part B Atomic Spectroscopy, 2022. DOI:10.1016/j.sab.2022.106417
    18. Ytsma, C.R., Dyar, M.D. Calculations of and effects on quantitative limits for multivariate analyses of geological materials with laser-induced breakdown spectroscopy. Spectrochimica Acta - Part B Atomic Spectroscopy, 2022. DOI:10.1016/j.sab.2022.106395
    19. Chen, S., Pei, H., Pisonero, J. et al. Simultaneous determination of lithology and major elements in rocks using laser-induced breakdown spectroscopy (LIBS) coupled with a deep convolutional neural network. Journal of Analytical Atomic Spectrometry, 2022, 37(3): 508-516. DOI:10.1039/d1ja00406a
    20. Castro, J.P., Machado, R.C., Andrade, D.F. et al. Quantitative Analysis. Laser-Induced Breakdown Spectroscopy in Biological, Forensic and Materials Sciences, 2022. DOI:10.1007/978-3-031-14502-5_2
    21. Kugaevskikh, A.V.. COVID-19 Screening Based on Application of Neural Network Classification of Exhale Spectra. 2022. DOI:10.1109/NeuroNT55429.2022.9805563
    22. Xing, P., Dong, J., Yu, P. et al. Quantitative analysis of lithium in brine by laser-induced breakdown spectroscopy based on convolutional neural network. Analytica Chimica Acta, 2021. DOI:10.1016/j.aca.2021.338799
    23. Zhao, W.-Y., Min, H., Liu, S. et al. Application Progress of Artificial Neural Network in Laser-Induced Breakdown Spectral Data Analysis | [人工神经网络在激光诱导击穿光谱数据分析中的应用进展]. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 2021, 41(7): 1998-2004. DOI:10.3964/j.issn.1000-0593(2021)07-1998-07
    24. Li, L.-N., Liu, X.-F., Yang, F. et al. A review of artificial neural network based chemometrics applied in laser-induced breakdown spectroscopy analysis. Spectrochimica Acta - Part B Atomic Spectroscopy, 2021. DOI:10.1016/j.sab.2021.106183
    25. Han, L., Liu, F., Zhang, L. An improved sub-model plsr quantitative analysis method based on svm classifier for chemcam laser-induced breakdown spectroscopy. Symmetry, 2021, 13(2): 1-13. DOI:10.3390/sym13020319
    26. Zou, L., Sun, C., Wu, M. et al. Online simultaneous determination of H2O and KCl in potash with LIBS coupled to convolutional and back-propagation neural networks. Journal of Analytical Atomic Spectrometry, 2021, 36(2): 303-313. DOI:10.1039/d0ja00431f
    27. Cao, X., Zhang, L., Wu, Z. et al. Quantitative analysis modeling for the ChemCam spectral data based on laser-induced breakdown spectroscopy using convolutional neural network. Plasma Science and Technology, 2020, 22(11): 115502. DOI:10.1088/2058-6272/aba5f6
    28. Ali Davari, S., Wexler, A.S. Quantification of toxic metals using machine learning techniques and spark emission spectroscopy. Atmospheric Measurement Techniques, 2020, 13(10): 5369-5377. DOI:10.5194/amt-13-5369-2020
    29. Li, L.-N., Liu, X.-F., Xu, W.-M. et al. A laser-induced breakdown spectroscopy multi-component quantitative analytical method based on a deep convolutional neural network. Spectrochimica Acta - Part B Atomic Spectroscopy, 2020. DOI:10.1016/j.sab.2020.105850
    30. Zhao, M., Yan, C., Feng, Y. et al. A novel strategy for quantitative analysis of soil pH via laser-induced breakdown spectroscopy coupled with random forest. Plasma Science and Technology, 2020, 22(7): 074003. DOI:10.1088/2058-6272/ab6ac2
    31. Ding, Y., Zhang, W., Zhao, X. et al. A hybrid random forest method fusing wavelet transform and variable importance for the quantitative analysis of K in potassic salt ore using laser-induced breakdown spectroscopy. Journal of Analytical Atomic Spectrometry, 2020, 35(6): 1131-1138. DOI:10.1039/d0ja00010h
    32. Chen, J., Pisonero, J., Chen, S. et al. Convolutional neural network as a novel classification approach for laser-induced breakdown spectroscopy applications in lithological recognition. Spectrochimica Acta - Part B Atomic Spectroscopy, 2020. DOI:10.1016/j.sab.2020.105801
    33. Costa, V.C., Babos, D.V., Castro, J.P. et al. Calibration strategies applied to laser-induced breakdown spectroscopy: A critical review of advances and challenges. Journal of the Brazilian Chemical Society, 2020, 31(12): 2439-2451. DOI:10.21577/0103-5053.20200175
    34. Bacon, J.R., Butler, O.T., Cairns, W.R.L. et al. Atomic spectrometry update-a review of advances in environmental analysis. Journal of Analytical Atomic Spectrometry, 2020, 35(1): 9-53. DOI:10.1039/c9ja90060h
    35. Duan, H., Han, L., Huang, G. Quantitative analysis of major metals in agricultural biochar using laser-induced breakdown spectroscopy with an AdaBoost artificial neural network algorithm. Molecules, 2019, 24(20): 3753. DOI:10.3390/molecules24203753
    36. Guo, K., Chen, A., Xu, W. et al. Effect of sample temperature on time-resolved laser-induced breakdown spectroscopy. AIP Advances, 2019, 9(6): 065214. DOI:10.1063/1.5097301
    37. Fu, Y., Hou, Z., Deguchi, Y. et al. From big to strong: Growth of the Asian laser-induced breakdown spectroscopy community. Plasma Science and Technology, 2019, 21(3): 030101. DOI:10.1088/2058-6272/aaf873

    Other cited types(0)

Catalog

    Article views (163) PDF downloads (216) Cited by(37)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return