Advanced Search+
Dingliang TANG (汤丁亮), Xianhui ZHANG (张先徽), Si-ze YANG (杨思泽). Plasma electrolytic liquefaction of cellulosic biomass[J]. Plasma Science and Technology, 2018, 20(4): 44002-044002. DOI: 10.1088/2058-6272/aa9563
Citation: Dingliang TANG (汤丁亮), Xianhui ZHANG (张先徽), Si-ze YANG (杨思泽). Plasma electrolytic liquefaction of cellulosic biomass[J]. Plasma Science and Technology, 2018, 20(4): 44002-044002. DOI: 10.1088/2058-6272/aa9563

Plasma electrolytic liquefaction of cellulosic biomass

Funds: This work was supported by the Natural Science Foundation of Guangdong Province, China (Grant No. 2015A030313005),the opening foundation (Grant No. 2016002) of Key Laboratory of Advanced Textile Materials and Manufacturing Technology (Zhejiang SciTech University), Fundamental Research Funds for the Central Universities, China (Grant No. 20720150022), Ministry of Education, and the Fund from the Fujian Provincial Key Laboratory for Plasma and Magnetic Resonance, China.
More Information
  • Received Date: September 03, 2017
  • In this paper, the rapid liquefaction of a corncob was achieved by plasma electrolysis, providing a new method for cellulosic biomass liquefaction. The liquefaction rate of the corncob was 95% after 5 min with polyethylene glycol and glycerol as the liquefying agent. The experiments not only showed that H+ ions catalyzed the liquefaction of the corncob, but also that using accelerated H+ ions, which were accelerated by an electric field, could effectively improve the liquefaction efficiency. There was an obvious discharge phenomenon, in which the generated radicals efficiently heated the solution and liquefied the biomass, in the process of plasma electrolytic liquefaction. Finally, the optimum parameters of the corncob liquefaction were obtained by experimentation, and the liquefaction products were analyzed.
  • [1]
    D’Souza J, Camargo R and Yan N 2017 Polym. Rev. 57 668
    [2]
    Demirbas A 2000 Energy Convers. Manage. 41 633
    [3]
    Shin J D et al 2013 Biotechnol. Bioprocess Eng. 18 956
    [4]
    Huang H J and Yuan X Z 2015 Energy Combust. 49 59
    [5]
    Zhang H R et al 2012 Ind. Crop. Prod. 39 47
    [6]
    Hassan E B M and Shukry N 2008 Ind. Crops Prod. 27 33
    [7]
    Yamada T et al 2007 J. Wood Sci. 53 487
    [8]
    Maldas D and Shiraishi N 1997 Biomass Energy 12 273
    [9]
    Sergeev A G and Hartwig J F 2011 Science 332 439
    [10]
    Yao Y, Yoshioka M and Shiraishi N 1993 Mokuzai Gakkaishi 39 930
    [11]
    ChenFGandLu ZM2009 J. Appl. Polym. Sci. 111 508
    [12]
    Lu Z X et al 2016 Bioresour. Technol. 199 423
    [13]
    Yerokhin A L et al 1999 Surf. Coat. Technol. 122 73
    [14]
    Raftery M A and Randmeir T 1968 Biochemistry US 7 3281
    [15]
    Yamada T and Ono H 2001 J. Wood Sci. 47 458
    [16]
    Nimlos M R, Blanksby S J, Qian X, Himmel M E and Johnson D K 2006 J. Phys. Chem. C 110 6145
    [17]
    Li Y L et al 2003 J. Chem. Phys. 119 4671
    [18]
    Denysenko I B et al 2004 J. Appl. Phys. 95 2713
    [19]
    Ito H and Tsudome H 2015 Trans. Mat. Res. Soc. Japan 40 33
    [20]
    Yan Z C, Li C and Lin W H 2008 J. Phys. D: Appl. Phys. 41 1525
    [21]
    Yan Z C, Li C and Lin W H 2009 Int. J. Hydrogen Energy 34 48
    [22]
    Chen Q and Shirai H 2012 Eur. Phys. J. D 66 1
    [23]
    Jin Y Q et al 2011 Bioresour. Technol. 102 3581
    [24]
    Lu Z X et al 2015 Biomass Bioenerg. 81 154
    [25]
    Ye L Y et al 2014 Bioresour. Technol. 153 147
  • Related Articles

    [1]Lianjie MA, Debing ZHANG, Limin YU, Erbing XUE, Xianmei ZHANG, Juan HUANG, Yong XIAO, Xianzu GONG, Jinping QIAN, EAST Team. Simulation on the transition of electrostatic instabilities in EAST steady-state scenario[J]. Plasma Science and Technology, 2023, 25(5): 055103. DOI: 10.1088/2058-6272/acafc0
    [2]Hongmei DU (杜洪梅), Liping ZHANG (张丽萍), Dongao LI (李东澳). THz plasma wave instability in field effect transistor with electron diffusion current density[J]. Plasma Science and Technology, 2018, 20(11): 115001. DOI: 10.1088/2058-6272/aacaef
    [3]Jiaqi DONG (董家齐). Kinetic micro-instabilities in the presence of impurities in toroidal magnetized plasmas[J]. Plasma Science and Technology, 2018, 20(9): 94005-094005. DOI: 10.1088/2058-6272/aad4f4
    [4]Yunxiao CAO (曹云霄), Zhiqiang WANG (王志强), Jinjun WANG (王进君), Guofeng LI (李国锋). Study of talcum charging status in parallel plate electrostatic separator based on particle trajectory analysis[J]. Plasma Science and Technology, 2018, 20(5): 54019-054019. DOI: 10.1088/2058-6272/aaa195
    [5]A ABBASI, M R RASHIDIAN VAZIRI. Effect of polarization force on the Jeans instability in collisional dusty plasmas[J]. Plasma Science and Technology, 2018, 20(3): 35301-035301. DOI: 10.1088/2058-6272/aa96fa
    [6]Congxiang LU (陆从相), Chengwu YI (依成武), Rongjie YI (依蓉婕), Shiwen LIU (刘诗雯). Analysis of the operating parameters of a vortex electrostatic precipitator[J]. Plasma Science and Technology, 2017, 19(2): 25504-025504. DOI: 10.1088/2058-6272/19/2/025504
    [7]LI Dehui(李德徽), XIANG Nong(项农), LIN Yu(林郁), WANG Xueyi(汪学毅), YANG Cheng(杨程), MA Jun(马骏). Benchmark Simulations of Gyro-Kinetic Electron and Fully-Kinetic Ion Model for Lower Hybrid Waves in Linear Region[J]. Plasma Science and Technology, 2014, 16(9): 821-825. DOI: 10.1088/1009-0630/16/9/03
    [8]WU Mingyu (吴明雨), LU Quanming (陆全明), ZHU Jie (朱洁), WANG Peiran (王沛然), WANG Shui (王水). Electromagnetic Particle-in-Cell Simulations of Electron Holes Formed During the Electron Two-Stream Instability[J]. Plasma Science and Technology, 2013, 15(1): 17-24. DOI: 10.1088/1009-0630/15/1/04
    [9]SUN Yue (孙岳), CHEN Zhipeng (陈志鹏), WANG Zhijiang (王之江), ZHU Mengzhou (朱孟周), ZHUANG Ge (庄革), J-TEXT team. Experimental Studies of Electrostatic Fluctuations and Turbulent Transport in the Boundary of J-TEXT Tokamak Using Reciprocating Probe[J]. Plasma Science and Technology, 2012, 14(12): 1041-1047. DOI: 10.1088/1009-0630/14/12/02
    [10]GAO Min (高敏), CHEN Shaoyong (陈少永), TANG Changjian (唐昌建), PENG Xiaodong (彭晓东). The electromagnetic instability in electron flow with ion background[J]. Plasma Science and Technology, 2010, 12(5): 523-528.
  • Cited by

    Periodical cited type(15)

    1. Priputnev, P.V., Romanchenko, I.V., Rostov, V.V. Systems and Technologies Based on Nonlinear Transmission Lines with Ferrite (Review). Technical Physics, 2024, 69(6): 1730-1741. DOI:10.1134/S1063784224060355
    2. Cui, Y., Meng, J., Yuan, Y. et al. Principle analysis and preliminary experiment of the gyromagnetic nonlinear transmission lines | [旋磁非线性传输线原理分析和初步实验]. Guofang Keji Daxue Xuebao/Journal of National University of Defense Technology, 2024, 46(3): 222-228. DOI:10.11887/j.cn.202403022
    3. Zhang, W., Lin, M., Li, H. et al. Finite element analysis of pulse sharpening effect of gyromagnetic nonlinear transmission line based on Landau-Lifshitz-Gilbert equation. Review of Scientific Instruments, 2024, 95(6): 064705. DOI:10.1063/5.0203542
    4. Stephens, J., Wright, T., Saheb, D. et al. Experimental Characterization of a Genetic Algorithm-Optimized Nonlinear Transmission Line for High Power RF Generation. IEEE Transactions on Microwave Theory and Techniques, 2024. DOI:10.1109/TMTT.2024.3457311
    5. Samoylichenko, M.A.. Multiple Modal Reservation in Flexible Printed Cables. 2023. DOI:10.1109/UralCon59258.2023.10291140
    6. Jiang, J., Cao, Y., Luo, Z. et al. Simulation research on pulse steepening technology based on ferrite transmission line | [基于铁氧体传输线的脉冲陡化技术仿真研究*]. Qiangjiguang Yu Lizishu/High Power Laser and Particle Beams, 2022, 34(9): 095005. DOI:10.11884/HPLPB202234.220092
    7. Jiang, J., Luo, Z., Cao, Y. et al. Design and Performance of a Ferrite Transmission Line Sharpener for Trigger Generator Used in FLTD. IEEE Transactions on Plasma Science, 2022, 50(9): 3113-3122. DOI:10.1109/TPS.2022.3194029
    8. Cui, Y., Meng, J., Huang, L. et al. 100-MW-Level Experiments of a Gyromagnetic Nonlinear Transmission Line System. IEEE Transactions on Electron Devices, 2022, 69(9): 5248-5255. DOI:10.1109/TED.2022.3192215
    9. Greco, A.F.G., Rossi, J.O., Barroso, J.J. et al. Analysis of the sharpening effect in gyromagnetic nonlinear transmission lines using the unidimensional form of the Landau-Lifshitz-Gilbert equation. Review of Scientific Instruments, 2022, 93(6): 065101. DOI:10.1063/5.0087452
    10. Cui, Y., Meng, J., Yuan, Y. et al. Numerical Analysis on the RF Characteristics of the Gyromagnetic Nonlinear Transmission Lines. IEEE Transactions on Plasma Science, 2022, 50(5): 1188-1197. DOI:10.1109/TPS.2022.3166898
    11. Zhu, D., Meng, J., Huang, L. et al. Simulation Research on a Compact High Power Microwave Source Based on Gyromagnetic Nonlinear Transmission Lines | [基于旋磁非线性传输线的小型化强电磁脉冲源的仿真研究]. Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2022, 44(2): 737-744. DOI:10.11999/JEIT200912
    12. Huang, L., Meng, J., Zhu, D. et al. Minimum Spatial Filling Rate of the Ferrite Required to Excite the Microwave Oscillations in the Gyromagnetic NLTL. IEEE Transactions on Plasma Science, 2022, 50(1): 23-28. DOI:10.1109/TPS.2021.3135022
    13. Cui, Y., Meng, J., Huang, L. et al. Operation analysis of the wideband high-power microwave sources based on the gyromagnetic nonlinear transmission lines. Review of Scientific Instruments, 2021, 92(3): 034702. DOI:10.1063/5.0040323
    14. Huang, L., Meng, J., Zhu, D. et al. Field-line coupling method for the simulation of gyromagnetic nonlinear transmission line based on the maxwell-LLG system. IEEE Transactions on Plasma Science, 2020, 48(11): 3847-3853. DOI:10.1109/TPS.2020.3029524
    15. Fairbanks, A.J., Darr, A.M., Garner, A.L. A Review of Nonlinear Transmission Line System Design. IEEE Access, 2020. DOI:10.1109/ACCESS.2020.3015715

    Other cited types(0)

Catalog

    Article views (269) PDF downloads (522) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return