Citation: | Dingliang TANG (汤丁亮), Xianhui ZHANG (张先徽), Si-ze YANG (杨思泽). Plasma electrolytic liquefaction of cellulosic biomass[J]. Plasma Science and Technology, 2018, 20(4): 44002-044002. DOI: 10.1088/2058-6272/aa9563 |
[1] |
D’Souza J, Camargo R and Yan N 2017 Polym. Rev. 57 668
|
[2] |
Demirbas A 2000 Energy Convers. Manage. 41 633
|
[3] |
Shin J D et al 2013 Biotechnol. Bioprocess Eng. 18 956
|
[4] |
Huang H J and Yuan X Z 2015 Energy Combust. 49 59
|
[5] |
Zhang H R et al 2012 Ind. Crop. Prod. 39 47
|
[6] |
Hassan E B M and Shukry N 2008 Ind. Crops Prod. 27 33
|
[7] |
Yamada T et al 2007 J. Wood Sci. 53 487
|
[8] |
Maldas D and Shiraishi N 1997 Biomass Energy 12 273
|
[9] |
Sergeev A G and Hartwig J F 2011 Science 332 439
|
[10] |
Yao Y, Yoshioka M and Shiraishi N 1993 Mokuzai Gakkaishi 39 930
|
[11] |
ChenFGandLu ZM2009 J. Appl. Polym. Sci. 111 508
|
[12] |
Lu Z X et al 2016 Bioresour. Technol. 199 423
|
[13] |
Yerokhin A L et al 1999 Surf. Coat. Technol. 122 73
|
[14] |
Raftery M A and Randmeir T 1968 Biochemistry US 7 3281
|
[15] |
Yamada T and Ono H 2001 J. Wood Sci. 47 458
|
[16] |
Nimlos M R, Blanksby S J, Qian X, Himmel M E and Johnson D K 2006 J. Phys. Chem. C 110 6145
|
[17] |
Li Y L et al 2003 J. Chem. Phys. 119 4671
|
[18] |
Denysenko I B et al 2004 J. Appl. Phys. 95 2713
|
[19] |
Ito H and Tsudome H 2015 Trans. Mat. Res. Soc. Japan 40 33
|
[20] |
Yan Z C, Li C and Lin W H 2008 J. Phys. D: Appl. Phys. 41 1525
|
[21] |
Yan Z C, Li C and Lin W H 2009 Int. J. Hydrogen Energy 34 48
|
[22] |
Chen Q and Shirai H 2012 Eur. Phys. J. D 66 1
|
[23] |
Jin Y Q et al 2011 Bioresour. Technol. 102 3581
|
[24] |
Lu Z X et al 2015 Biomass Bioenerg. 81 154
|
[25] |
Ye L Y et al 2014 Bioresour. Technol. 153 147
|
[1] | Lianjie MA, Debing ZHANG, Limin YU, Erbing XUE, Xianmei ZHANG, Juan HUANG, Yong XIAO, Xianzu GONG, Jinping QIAN, EAST Team. Simulation on the transition of electrostatic instabilities in EAST steady-state scenario[J]. Plasma Science and Technology, 2023, 25(5): 055103. DOI: 10.1088/2058-6272/acafc0 |
[2] | Hongmei DU (杜洪梅), Liping ZHANG (张丽萍), Dongao LI (李东澳). THz plasma wave instability in field effect transistor with electron diffusion current density[J]. Plasma Science and Technology, 2018, 20(11): 115001. DOI: 10.1088/2058-6272/aacaef |
[3] | Jiaqi DONG (董家齐). Kinetic micro-instabilities in the presence of impurities in toroidal magnetized plasmas[J]. Plasma Science and Technology, 2018, 20(9): 94005-094005. DOI: 10.1088/2058-6272/aad4f4 |
[4] | Yunxiao CAO (曹云霄), Zhiqiang WANG (王志强), Jinjun WANG (王进君), Guofeng LI (李国锋). Study of talcum charging status in parallel plate electrostatic separator based on particle trajectory analysis[J]. Plasma Science and Technology, 2018, 20(5): 54019-054019. DOI: 10.1088/2058-6272/aaa195 |
[5] | A ABBASI, M R RASHIDIAN VAZIRI. Effect of polarization force on the Jeans instability in collisional dusty plasmas[J]. Plasma Science and Technology, 2018, 20(3): 35301-035301. DOI: 10.1088/2058-6272/aa96fa |
[6] | Congxiang LU (陆从相), Chengwu YI (依成武), Rongjie YI (依蓉婕), Shiwen LIU (刘诗雯). Analysis of the operating parameters of a vortex electrostatic precipitator[J]. Plasma Science and Technology, 2017, 19(2): 25504-025504. DOI: 10.1088/2058-6272/19/2/025504 |
[7] | LI Dehui(李德徽), XIANG Nong(项农), LIN Yu(林郁), WANG Xueyi(汪学毅), YANG Cheng(杨程), MA Jun(马骏). Benchmark Simulations of Gyro-Kinetic Electron and Fully-Kinetic Ion Model for Lower Hybrid Waves in Linear Region[J]. Plasma Science and Technology, 2014, 16(9): 821-825. DOI: 10.1088/1009-0630/16/9/03 |
[8] | WU Mingyu (吴明雨), LU Quanming (陆全明), ZHU Jie (朱洁), WANG Peiran (王沛然), WANG Shui (王水). Electromagnetic Particle-in-Cell Simulations of Electron Holes Formed During the Electron Two-Stream Instability[J]. Plasma Science and Technology, 2013, 15(1): 17-24. DOI: 10.1088/1009-0630/15/1/04 |
[9] | SUN Yue (孙岳), CHEN Zhipeng (陈志鹏), WANG Zhijiang (王之江), ZHU Mengzhou (朱孟周), ZHUANG Ge (庄革), J-TEXT team. Experimental Studies of Electrostatic Fluctuations and Turbulent Transport in the Boundary of J-TEXT Tokamak Using Reciprocating Probe[J]. Plasma Science and Technology, 2012, 14(12): 1041-1047. DOI: 10.1088/1009-0630/14/12/02 |
[10] | GAO Min (高敏), CHEN Shaoyong (陈少永), TANG Changjian (唐昌建), PENG Xiaodong (彭晓东). The electromagnetic instability in electron flow with ion background[J]. Plasma Science and Technology, 2010, 12(5): 523-528. |
1. | Priputnev, P.V., Romanchenko, I.V., Rostov, V.V. Systems and Technologies Based on Nonlinear Transmission Lines with Ferrite (Review). Technical Physics, 2024, 69(6): 1730-1741. DOI:10.1134/S1063784224060355 | |
2. | Cui, Y., Meng, J., Yuan, Y. et al. Principle analysis and preliminary experiment of the gyromagnetic nonlinear transmission lines | [旋磁非线性传输线原理分析和初步实验]. Guofang Keji Daxue Xuebao/Journal of National University of Defense Technology, 2024, 46(3): 222-228. DOI:10.11887/j.cn.202403022 | |
3. | Zhang, W., Lin, M., Li, H. et al. Finite element analysis of pulse sharpening effect of gyromagnetic nonlinear transmission line based on Landau-Lifshitz-Gilbert equation. Review of Scientific Instruments, 2024, 95(6): 064705. DOI:10.1063/5.0203542 | |
4. | Stephens, J., Wright, T., Saheb, D. et al. Experimental Characterization of a Genetic Algorithm-Optimized Nonlinear Transmission Line for High Power RF Generation. IEEE Transactions on Microwave Theory and Techniques, 2024. DOI:10.1109/TMTT.2024.3457311 | |
5. | Samoylichenko, M.A.. Multiple Modal Reservation in Flexible Printed Cables. 2023. DOI:10.1109/UralCon59258.2023.10291140 | |
6. | Jiang, J., Cao, Y., Luo, Z. et al. Simulation research on pulse steepening technology based on ferrite transmission line | [基于铁氧体传输线的脉冲陡化技术仿真研究*]. Qiangjiguang Yu Lizishu/High Power Laser and Particle Beams, 2022, 34(9): 095005. DOI:10.11884/HPLPB202234.220092 | |
7. | Jiang, J., Luo, Z., Cao, Y. et al. Design and Performance of a Ferrite Transmission Line Sharpener for Trigger Generator Used in FLTD. IEEE Transactions on Plasma Science, 2022, 50(9): 3113-3122. DOI:10.1109/TPS.2022.3194029 | |
8. | Cui, Y., Meng, J., Huang, L. et al. 100-MW-Level Experiments of a Gyromagnetic Nonlinear Transmission Line System. IEEE Transactions on Electron Devices, 2022, 69(9): 5248-5255. DOI:10.1109/TED.2022.3192215 | |
9. | Greco, A.F.G., Rossi, J.O., Barroso, J.J. et al. Analysis of the sharpening effect in gyromagnetic nonlinear transmission lines using the unidimensional form of the Landau-Lifshitz-Gilbert equation. Review of Scientific Instruments, 2022, 93(6): 065101. DOI:10.1063/5.0087452 | |
10. | Cui, Y., Meng, J., Yuan, Y. et al. Numerical Analysis on the RF Characteristics of the Gyromagnetic Nonlinear Transmission Lines. IEEE Transactions on Plasma Science, 2022, 50(5): 1188-1197. DOI:10.1109/TPS.2022.3166898 | |
11. | Zhu, D., Meng, J., Huang, L. et al. Simulation Research on a Compact High Power Microwave Source Based on Gyromagnetic Nonlinear Transmission Lines | [基于旋磁非线性传输线的小型化强电磁脉冲源的仿真研究]. Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2022, 44(2): 737-744. DOI:10.11999/JEIT200912 | |
12. | Huang, L., Meng, J., Zhu, D. et al. Minimum Spatial Filling Rate of the Ferrite Required to Excite the Microwave Oscillations in the Gyromagnetic NLTL. IEEE Transactions on Plasma Science, 2022, 50(1): 23-28. DOI:10.1109/TPS.2021.3135022 | |
13. | Cui, Y., Meng, J., Huang, L. et al. Operation analysis of the wideband high-power microwave sources based on the gyromagnetic nonlinear transmission lines. Review of Scientific Instruments, 2021, 92(3): 034702. DOI:10.1063/5.0040323 | |
14. | Huang, L., Meng, J., Zhu, D. et al. Field-line coupling method for the simulation of gyromagnetic nonlinear transmission line based on the maxwell-LLG system. IEEE Transactions on Plasma Science, 2020, 48(11): 3847-3853. DOI:10.1109/TPS.2020.3029524 | |
15. | Fairbanks, A.J., Darr, A.M., Garner, A.L. A Review of Nonlinear Transmission Line System Design. IEEE Access, 2020. DOI:10.1109/ACCESS.2020.3015715 |