Advanced Search+
Junwei JIA (贾军伟), Hongbo FU (付洪波), Zongyu HOU (侯宗余), Huadong WANG (王华东), Zhibo NI (倪志波), Fengzhong DONG (董凤忠). Calibration curve and support vector regression methods applied for quantification of cement raw meal using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2019, 21(3): 34003-034003. DOI: 10.1088/2058-6272/aae3e1
Citation: Junwei JIA (贾军伟), Hongbo FU (付洪波), Zongyu HOU (侯宗余), Huadong WANG (王华东), Zhibo NI (倪志波), Fengzhong DONG (董凤忠). Calibration curve and support vector regression methods applied for quantification of cement raw meal using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2019, 21(3): 34003-034003. DOI: 10.1088/2058-6272/aae3e1

Calibration curve and support vector regression methods applied for quantification of cement raw meal using laser-induced breakdown spectroscopy

Funds: This work is supported by National Natural Science Foundation of China (Grant Nos. 61505223, 41775128), the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. Y03RC21124), the External Cooperation Program of Chinese Academy of Sciences (Grant No. GJHZ1726) and the project of China State Key Lab. of Power System (Grant Nos. SKLD18KM11, SKLD18M12).
More Information
  • Received Date: July 19, 2018
  • Laser-induced breakdown spectroscopy (LIBS) is a qualitative and quantitative analytical technique with great potential in the cement industrial analysis. Calibration curve (CC) and support vector regression (SVR) methods coupled with LIBS technology were applied for the quantification of three types of cement raw meal samples to compare their analytical concentration range and the ability to reduce matrix effects, respectively. To reduce the effects of fluctuations of the pulse-to-pulse, the unstable ablation and improve the reproducibility, all of the analysis line intensities were normalized on a per-detector basis. The prediction results of the elements of interest in the three types of samples, Ca, Si, Fe, Al, Mg, Na, K and Ti, were compared with the results of the wet chemical analysis. The average relative error (ARE), relative standard deviation (RSD) and root mean squared error of prediction (RMSEP) were employed to investigate and evaluate the prediction accuracy and stability of the two prediction methods. The maximum average ARE of the CC and SVR methods is 34.62% instead of 6.13%, RSD is 40.89% instead of 7.60% and RMSEP is 1.34% instead of 0.43%. The results show that SVR method can accurately analyze samples within a wider concentration range and reduce the matrix effects, and LIBS coupled with it for a rapid, stable and accurate quantification of different types of cement raw meal samples is promising.
  • [1]
    Lei Y et al 2011 Atmos. Environ. 45 147
    [2]
    Lemberge P, Van Espen P J and Vrebos B A R 2000 X-Ray Spectrom. 29 297
    [3]
    Polat R et al 2004 J. Quant. Spectrosc. Radiat. Transfer 83 377
    [4]
    Chang M T et al 2017 Int. J. Adv. Eng. Sci. Appl. Math. 9 136
    [5]
    Taefi N, Khalaji M and Tavassoli S H 2010 Cem. Concr. Res. 40 1114
    [6]
    Wang J G et al 2015 Plasma Sci. Technol. 17 649
    [7]
    Zhang L et al 2012 Front. Phys. 7 690
    [8]
    Hu L et al 2015 Plasma Sci. Technol. 17 699
    [9]
    Zhang S et al 2018 Front. Phys. 13 135201
    [10]
    Wang Z et al 2012 Front. Phys. 7 708
    [11]
    Cremers D A and Radziemski L J 2006 Handbook of Laser- Induced Breakdown Spectroscopy (New Jersey: Wiley) (https://doi.org/10.1002/0470093013)
    [12]
    Gondal M A et al 2009 Spectrosc. Lett. 42 171
    [13]
    Mansoori A et al 2011 Opt. Lasers Eng. 49 318
    [14]
    Gehlen C D et al 2009 Spectrochim. Acta B 64 1135
    [15]
    Yin H L et al 2016 J. Anal. At. Spectrom. 31 2384
    [16]
    Li Y F et al 2016 Spectrosc. Spectral Anal. 36 1494
    [17]
    Owolabi T O and Gondal M 2017 J. Anal. At. Spectrom. (https://doi.org/10.1039/C7JA00229G)
    [18]
    Gu Y H et al 2016 Chin. Phys. Lett. 33 085201
    [19]
    Zhang T L et al 2015 J. Anal. At. Spectrom. 30 368
    [20]
    Shi Q et al 2015 J. Anal. At. Spectrom. 30 2384
    [21]
    Boucher T F et al 2015 Spectrochim. Acta B 107 1
    [22]
    Barnett W B, Fassel V A and Kniseley R N 1968 Spectrochim. Acta B 23 643
    [23]
    Fan R E et al 2005 J. Mach. Learn. Res. 6 1889 (http://jmlr. org/papers/v6/fan05a.html)
    [24]
    Awad M and Khanna R 2015 Support Vector Regression Efficient Learning Machines (Berkeley, CA: Apress) (https://doi.org/10.1007/978-1-4302-5990-9_4)
    [25]
    Smola A J and Sch?lkopf B 2004 Stat. Comput. 14 199
  • Related Articles

    [1]Jie HUANG (黄杰), Yasuhiro SUZUKI (铃木康浩), Yunfeng LIANG (梁云峰), Manni JIA (贾曼妮), Youwen SUN (孙有文), Nan CHU (楚南), Jichan XU (许吉禅), Muquan WU (吴木泉), EAST team. Magnetic field topology modeling under resonant magnetic perturbations on EAST[J]. Plasma Science and Technology, 2019, 21(6): 65105-065105. DOI: 10.1088/2058-6272/ab0d35
    [2]Aohua MAO (毛傲华), Yang REN (任洋), Hantao JI (吉瀚涛), Peng E (鄂鹏), Ke HAN (韩轲), Zhibin WANG (王志斌), Qingmei XIAO (肖青梅), Liyi LI (李立毅). Conceptual design of the three-dimensional magnetic field configuration relevant to the magnetopause reconnection in the SPERF[J]. Plasma Science and Technology, 2017, 19(3): 34002-034002. DOI: 10.1088/2058-6272/19/3/034002
    [3]WU Ding (吴鼎), LIU Ping (刘平), SUN Liying (孙立影), HAI Ran (海然), DING Hongbin (丁洪斌). Influence of a Static Magnetic Field on Laser Induced Tungsten Plasma in Air[J]. Plasma Science and Technology, 2016, 18(4): 364-369. DOI: 10.1088/1009-0630/18/4/06
    [4]LI Weixin (李炜昕), YUAN Zhensheng (袁振圣), CHEN Zhenmao (陈振茂). A Moving Coordinate Numerical Method for Analyses of Electromagneto-Mechanical Coupled Behavior of Structures in a Strong Magnetic Field Aiming at Application to Tokamak Structure[J]. Plasma Science and Technology, 2014, 16(12): 1163-1170. DOI: 10.1088/1009-0630/16/12/14
    [5]ZHAO Qing(赵青), XING Xiaojun(邢晓俊), XUAN Yinliang(宣银良), LIU Shuzhang(刘述章). The Influence of Magnetic Field on Antenna Performance in Plasma[J]. Plasma Science and Technology, 2014, 16(6): 614-619. DOI: 10.1088/1009-0630/16/6/14
    [6]DUAN Ping(段萍), ZHOU Xinwei(周新维), LIU Yuan(刘媛), CAO Anning(曹安宁), QIN Haijuan(覃海娟), CHEN Long(陈龙), YIN Yan(殷燕). Effects of Magnetic Field and Ion Velocity on SPT Plasma Sheath Characteristics[J]. Plasma Science and Technology, 2014, 16(2): 161-167. DOI: 10.1088/1009-0630/16/2/13
    [7]SHEN Wulin (沈武林), MA Zhibin (马志斌), TAN Bisong (谭必松), WU Jun (吴俊). Ion Heating in an ECR Plasma with a Magnetic Mirror Field[J]. Plasma Science and Technology, 2013, 15(6): 516-520. DOI: 10.1088/1009-0630/15/6/06
    [8]LI Hui (李辉), XIE Mingfeng(谢铭丰). Measurement of Plasma Parameters of Gliding Arc Driven by the Transverse Magnetic Field[J]. Plasma Science and Technology, 2012, 14(8): 712-715. DOI: 10.1088/1009-0630/14/8/06
    [9]GUO Yong (郭勇), XIAO Bingjia (肖炳甲), LUO Zhengping (罗正平). Toroidal Multipolar Expansion for Fast L-Mode Plasma Boundary Reconstruction in EAST[J]. Plasma Science and Technology, 2011, 13(3): 332-341.
    [10]YUAN Zhongcai(袁忠才), SHI Jiaming (时家明), HUANG Yong (黄勇), XU Bo (许波). Faraday angle of Linearly Polarized Waves along Magnetic Field in Magnetized Collisional Plasmas[J]. Plasma Science and Technology, 2010, 12(5): 519-522.

Catalog

    Article views (141) PDF downloads (281) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return