Advanced Search+
Shengjie ZHU (朱圣洁), Amin ZHOU (周阿敏), Feng YU (于锋), Bin DAI (代斌), Cunhua MA (马存花). Enhanced CO2 decomposition via metallic foamed electrode packed in self-cooling DBD plasma device[J]. Plasma Science and Technology, 2019, 21(8): 85504-085504. DOI: 10.1088/2058-6272/ab15e5
Citation: Shengjie ZHU (朱圣洁), Amin ZHOU (周阿敏), Feng YU (于锋), Bin DAI (代斌), Cunhua MA (马存花). Enhanced CO2 decomposition via metallic foamed electrode packed in self-cooling DBD plasma device[J]. Plasma Science and Technology, 2019, 21(8): 85504-085504. DOI: 10.1088/2058-6272/ab15e5

Enhanced CO2 decomposition via metallic foamed electrode packed in self-cooling DBD plasma device

Funds: This work was financially supported by the National Natural Science Foundation of China (No. 21663022).
More Information
  • Received Date: December 23, 2018
  • Revised Date: April 01, 2019
  • Accepted Date: April 03, 2019
  • A self-cooling dielectric barrier discharge reactor, packed with foamed Cu and Ni mesh and operated at ambient conditions, was used for the composition of CO2 into CO and O2. The influences of power, frequency, and other discharge characteristics were investigated in order to have a better understanding of the effect of the packing materials on CO2 decomposition. It is found that porous foamed Cu and Ni not only played a role as the carrier of energy transformation and electrode distributed in discharge gaps but also promoted the equilibrium shifting toward the product side to yield more CO by consuming some part of O2 and O radicals generated from the decomposition of CO2. The maximum CO2 decomposition rates of 48.6% and 49.2% and the maximum energy efficiency of 9.71% and 10.18% were obtained in the foamed Ni and Cu mesh, respectively.
  • [1]
    Andrea A et al 2017 Chem. Rev. 117 9804
    [2]
    Snoeckx R and Bogaerts A 2017 Chem. Soc. Rev. 46 5805
    [3]
    Ozkan A et al 2016 Plasma Sources Sci. Technol. 25 025013
    [4]
    Liu P et al 2019 Plasma Sci. Technol. 21 012001
    [5]
    Zhou A M et al 2018 Catalysts 8 256
    [6]
    Tu X et al 2011 J. Phys. D Appl. Phys. 44 274007
    [7]
    Tu X and Whitehead J C 2012 Appl. Catal. B Environ. 125 439
    [8]
    Mei D H et al 2015 Plasma Sources Sci. Technol. 24 015011
    [9]
    Zhao D et al 2018 Plasma Sci. Technol. 20 014020
    [10]
    Kogelschatz U 2003 Plasma Chem. Plasma Process 23 1
    [11]
    Wang S et al 2012 Plasma Chem. Plasma Process. 32 979
    [12]
    Yu Q Q et al 2012 Plasma Chem. Plasma Process. 32 153
    [13]
    Mei D H et al 2016 Appl. Catal. B Environ. 182 525
    [14]
    Duan X F et al 2015 AIChE J. 61 898
    [15]
    van Laer K and Bogaerts A 2015 Energy Technol. 3 1038
    [16]
    Zhou A M et al 2017 Greenhouse Gases Sci. Technol. 7 721
    [17]
    Mei D H and Tu X 2017 J. CO2 Util. 19 68
    [18]
    Zhang K et al 2017 Ind. Eng. Chem. Res. 56 3204
    [19]
    Wang S G et al 2005 J. Phys. Chem. B 109 18956
    [20]
    Mori S, Yamamoto A and Suzuki M 2006 Plasma Sources Sci. Technol. 15 609
    [21]
    Horváth G, Skalný J D and Mason N J 2008 J. Phys. D Appl. Phys. 41 225207
    [22]
    Yamamoto A, Mori S and Suzuki M 2007 Thin Solid Films 515 4296
    [23]
    van Durme J et al 2008 Appl. Catal. B Environ. 78 324
    [24]
    Ray D, Saha R and Ch S 2017 Catalysts 7 244
    [25]
    Patil B S et al 2016 Appl. Catal. B Environ. 194 123
    [26]
    Mei D H et al 2016 Plasma Process. Polym. 13 544
    [27]
    Bogaerts A et al 2015 Faraday Discuss. 183 217
    [28]
    Ozkan A, Bogaerts A and Reniers F 2017 J. Phys. D Appl. Phys. 50 084004
    [29]
    Valdivia-Barrientos R et al 2006 Plasma Sources Sci. Technol. 15 237
    [30]
    Jiang W M et al 2014 Appl. Phys. Lett. 104 013505
    [31]
    Aerts R, Snoeckx R and Bogaerts A 2014 Plasma Process. Polym. 11 985
    [32]
    Paulussen S et al 2010 Plasma Sources Sci. Technol. 19 034015
    [33]
    Aerts R, Somers W and Bogaerts A 2015 Chem. Sus. Chem. 8 702
    [34]
    Belov I, Paulussen S and Bogaerts A 2016 Plasma Sources Sci. Technol. 25 015023
    [35]
    Butterworth T, Elder R and Allen R 2016 Chem. Eng. J. 293 55
  • Related Articles

    [1]Dejie WEI, Jianwen WU, Liying ZHU. Study on plasma expansion model of primary discharge on spacecraft solar array[J]. Plasma Science and Technology, 2024, 26(11): 115301. DOI: 10.1088/2058-6272/ad718b
    [2]Haoxi CONG, Yuxuan WANG, Lipan QIAO, Wenjing SU, Qingmin LI. A spatiotemporal evolution model of a short-circuit arc to a secondary arc based on the improved charge simulation method[J]. Plasma Science and Technology, 2024, 26(1): 015503. DOI: 10.1088/2058-6272/ad0c22
    [3]Liying ZHU (朱立颖), Zhigang LIU (刘治钢), Xiaofeng ZHANG (张晓峰), Chao WANG (王超), Xiaofei LI (李小飞), Bingxin ZHAO (赵冰欣). Study on volt-ampere characteristics of solar array arcs in LEO spacecraft[J]. Plasma Science and Technology, 2019, 21(2): 25302-025302. DOI: 10.1088/2058-6272/aaf18a
    [4]D B MELROSE. Rethinking the solar flare paradigm[J]. Plasma Science and Technology, 2018, 20(7): 74003-074003. DOI: 10.1088/2058-6272/aab966
    [5]Saravanan ARUMUGAM, Prince ALEX, Suraj Kumar SINHA. Feedback model of secondary electron emission in DC gas discharge plasmas[J]. Plasma Science and Technology, 2018, 20(2): 25404-025404. DOI: 10.1088/2058-6272/aa8e3f
    [6]Lele WANG (王乐乐), XiutaoHUANG (黄修涛), Junfeng CHEN (陈俊峰), Shengming WANG (王圣明), Zhaoyang HU (胡朝阳), Minghai LIU (刘明海). Simulated and experimental studies on the array dielectric barrier discharge of water electrodes[J]. Plasma Science and Technology, 2017, 19(3): 35402-035402. DOI: 10.1088/2058-6272/19/3/035402
    [7]Congxiang LU (陆从相), Chengwu YI (依成武), Rongjie YI (依蓉婕), Shiwen LIU (刘诗雯). Analysis of the operating parameters of a vortex electrostatic precipitator[J]. Plasma Science and Technology, 2017, 19(2): 25504-025504. DOI: 10.1088/2058-6272/19/2/025504
    [8]CONG Haoxi (丛浩熹), LI Qingmin (李庆民), XING Jinyuan (行晋源), LI Jinsong (李劲松), CHEN Qiang (陈强). Critical Length Criterion and the Arc Chain Model for Calculating the Arcing Time of the Secondary Arc Related to AC Transmission Lines[J]. Plasma Science and Technology, 2015, 17(6): 475-480. DOI: 10.1088/1009-0630/17/6/07
    [9]CONG Haoxi(丛浩熹), LI Qingmin(李庆民), XING Jinyuan(行晋源), LI Jinsong(李劲松). Typical Motion and Extinction Characteristics of the Secondary Arcs Associated with Half-Wavelength Transmission Lines[J]. Plasma Science and Technology, 2014, 16(9): 843-847. DOI: 10.1088/1009-0630/16/9/07
    [10]HAO Xiping (郝希平), SONG Zhiqiang (宋志), HE Jian (贺健), LI Qiuze (李秋泽), et al.. Calculation of the Effect of Opacity on the Solar Spectral Lines of CIV[J]. Plasma Science and Technology, 2013, 15(8): 760-763. DOI: 10.1088/1009-0630/15/8/08

Catalog

    Article views (188) PDF downloads (200) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return