Advanced Search+
Duc Ba NGUYEN, Quang Hung TRINH, Won Gyu LEE, Young Sun MOK. Analysis of an Ar plasma jet in a dielectric barrier discharge conjugated with a microsecond pulse[J]. Plasma Science and Technology, 2019, 21(9): 95401-095401. DOI: 10.1088/2058-6272/ab1d45
Citation: Duc Ba NGUYEN, Quang Hung TRINH, Won Gyu LEE, Young Sun MOK. Analysis of an Ar plasma jet in a dielectric barrier discharge conjugated with a microsecond pulse[J]. Plasma Science and Technology, 2019, 21(9): 95401-095401. DOI: 10.1088/2058-6272/ab1d45

Analysis of an Ar plasma jet in a dielectric barrier discharge conjugated with a microsecond pulse

Funds: This work was supported by the 2019 Scientific Promotion Program funded by Jeju National University and the R&D Program ‘Plasma Advanced Technology for Agriculture & Food (Plasma Farming)’ through the National Fusion Research Institute (NFRI), Daejeon, Korea.
More Information
  • Received Date: December 28, 2018
  • Revised Date: April 19, 2019
  • Accepted Date: April 27, 2019
  • In this work, an Ar plasma jet generated by an AC-microsecond-pulse-driven dielectric barrier discharge reactor, which had two ring-shaped electrodes isolated from the ambient atmosphere by transformer oil, was investigated. By special design of the oil insulation, a chemically active Ar plasma jet along with a safe and stable plasma process as well as low emission of CO and NOx were successfully achieved. The results indicated that applied voltage and frequency were basic factors influencing the jet temperature, discharge power, and jet length, which increased significantly with the two operating parameters. Meanwhile, gas velocity affected the jet temperature in a reverse direction. In comparison with a He plasma jet, the Ar plasma jet had relatively low jet temperature under the same level of the input parameters, being preferable for bio-applications. The Ar plasma jet has been tested to interact with human skin within 5 min without the perception of burnt skin and electrical shock.
  • [1]
    Penkov O V et al 2015 J. Coat. Technol. Res. 12 225
    [2]
    Gay-Mimbrera J et al 2016 Adv. Ther. 33 894
    [3]
    Mariotti D et al 2012 Plasma Process. Polym. 9 1074
    [4]
    von Woedtke T et al 2013 Phys. Rep. 530 291
    [5]
    Wu S, Cao Y and Lu X 2016 IEEE Trans. Plasma Sci.44 134
    [6]
    Michael K 2015 Plasma Sources Sci. Technol. 24 033001
    [7]
    Bruggeman P J et al 2016 Plasma Sources Sci. Technol. 25 053002
    [8]
    Deng G L et al 2018 Plasma Sci. Technol. 20 115503
    [9]
    Zhang R B et al 2017 Plasma Sci. Technol. 19 105505
    [10]
    Brandenburg R 2017 Plasma Sources Sci. Technol. 26 053001
    [11]
    Lu X, Laroussi M and Puech V 2012 Plasma Sources Sci.Technol. 21 034005
    [12]
    Reuter S, von Woedtke T and Weltmann K D 2018 J. Phys. D:Appl. Phys. 51 233001
    [13]
    Yang L L et al 2016 Plasma Sci. Technol. 18 912
    [14]
    Ohyama R, Sakamoto M and Nagai A 2009 J. Phys. D: Appl.Phys. 42 105203
    [15]
    Teschke M et al 2005 IEEE Trans. Plasma Sci. 33 310
    [16]
    Mericam-Bourdet N et al 2009 J. Phys. D: Appl. Phys. 42 055207
    [17]
    Oh J S, Walsh J L and Bradley J W 2012 Plasma Sources Sci.Technol. 21 034020
    [18]
    Liu L J et al 2014 Appl. Phys. Lett. 104 244108
    [19]
    Algwari Q T and O’Connell D 2011 Appl. Phys. Lett. 99 121501
    [20]
    Ba Nguyen D, Mok Y S and Lee W G 2019 IEEE Trans.Plasma Sci. (https://doi.org/10.1109/TPS.2019.2896666)
    [21]
    Niittymäki M et al 2015 DC dielectric breakdown behavior of thermally sprayed ceramic coatings Proc. 24th Nordic Insulation Symp. on Materials, Components and Diagnostics (Copenhagen, Denmark, 2015)
    [22]
    Ba Nguyen D and Lee W G 2014 J. Ind. Eng. Chem. 20 972
    [23]
    Zhu P et al 2018 J. Phys. D: Appl. Phys. 51 405202
    [24]
    Ba Nguyen D et al 2019 IEEE Trans. Plasma Sci. (https://doi.org/10.1109/TPS.2019.2894019)
    [25]
    Begum A, Laroussi M and Pervez M R 2013 AIP Adv. 3 062117
    [26]
    Park H S et al 2010 Phys. Plasmas 17 033502
    [27]
    Lu X P and Ostrikov K 2018 Appl. Phys. Rev. 5 031102
    [28]
    Li Q et al 2009 Appl. Phys. Lett. 95 141502
    [29]
    Wu S, Lu X and Pan Y 2013 Curr. Appl. Phys. 13 S1
    [30]
    Lai K L et al 2015 AIP Conf. Proc. 1657 150002
    [31]
    Lau Y et al 2014 J. Sci. Technol. Trop. 10 131
    [32]
    Zhou L M et al 1998 Energy Fuels 12 1191
    [33]
    Wang R X et al 2016 Appl. Surf. Sci. 367 401
    [34]
    Nguyen D B and Lee W G 2016 RSC Adv. 6 26505
    [35]
    Yambe K, Furuichi T and Ogura K 2014 Influence of gas flow on plasma length in atmospheric pressure plasma jet JPS Conf. Proc. 1 015084
    [36]
    Lide D R 2010 CRC Handbook of Chemistry and Physics 90th edn (Boca Raton, FL: CRC Press)
    [37]
    Selvam M and Thiru S 2014 J. Eng. Technol. 5 105
    [38]
    Shao X J et al 2011 IEEE Trans. Plasma Sci. 39 2340
    [39]
    Huber M L and Harvey A H 2010 Thermal conductivity of gases ed D R Lide CRC Handbook of Chemistry and Physics 90th edn (Boca Raton, FL: CRC Press)
    [40]
    Lide D R 2010 Standard thermodynamic properties of chemical substances ed D R Lide CRC Handbook of Chemistry and Physics 90th edn (Boca Raton, FL: CRC Press)
  • Related Articles

    [1]Qianghua YUAN (袁强华), Pei REN (任佩), Yongjie ZHOU (周永杰), Guiqin YIN (殷桂琴), Chenzhong DONG (董晨钟). OES diagnostic of radicals in 33 MHz radio-frequency Ar/C2H5OH atmospheric pressure plasma jet[J]. Plasma Science and Technology, 2019, 21(2): 25402-025402. DOI: 10.1088/2058-6272/aaebd1
    [2]N C ROY, M R TALUKDER, A N CHOWDHURY. OH and O radicals production in atmospheric pressure air/Ar/H2O gliding arc discharge plasma jet[J]. Plasma Science and Technology, 2017, 19(12): 125402. DOI: 10.1088/2058-6272/aa86a7
    [3]JIN Ying (金英), REN Chunsheng (任春生), YANG Liang (杨亮), ZHANG Jialiang (张家良). Nonequilibrium Atmospheric Pressure Ar/O2 Plasma Jet: Properties and Application to Surface Cleaning[J]. Plasma Science and Technology, 2016, 18(2): 168-172. DOI: 10.1088/1009-0630/18/2/12
    [4]CHEN Bingyan (陈秉岩), ZHU Changping (朱昌平), CHEN Longwei (陈龙威), FEI Juntao (费峻涛), GAO Ying (高莹), WEN Wen (文文), SHAN Minglei (单鸣雷), REN Zhaoxing (任兆杏). Atmospheric Pressure Plasma Jet in Organic Solution: Spectra, Degradation Effects of Solution Flow Rate and Initial pH Value[J]. Plasma Science and Technology, 2014, 16(12): 1126-1134. DOI: 10.1088/1009-0630/16/12/08
    [5]ZHOU Yongjie(周永杰), YUAN Qianghua(袁强华), WANG Xiaomin(王晓敏), YIN Guiqin(殷桂琴), DONG Chenzhong(董晨钟). Optical Spectroscopic Investigation of Ar/CH 3 OH and Ar/N 2 /CH 3 OH Atmospheric Pressure Plasma Jets[J]. Plasma Science and Technology, 2014, 16(2): 99-103. DOI: 10.1088/1009-0630/16/2/03
    [6]JIN Ying (金英), REN Chunsheng (任春生), YANG Liang (杨亮), ZHANG Jialiang (张家良), et al.. Atmospheric Pressure Plasma Jet in Ar and O 2 /Ar Mixtures: Properties and High Performance for Surface Cleaning[J]. Plasma Science and Technology, 2013, 15(12): 1203-1208. DOI: 10.1088/1009-0630/15/12/08
    [7]LI Cong (李聪), ZHANG Jialiang (张家良), YAO Zhi (姚志), WU Xingwei (吴兴伟), et al.. Diagnosis of Electron, Vibrational and Rotational Temperatures in an Ar/N 2 Shock Plasma Jet Produced by a Low Pressure DC Cascade Arc Discharge[J]. Plasma Science and Technology, 2013, 15(9): 875-880. DOI: 10.1088/1009-0630/15/9/08
    [8]FEI Xiaomeng (费小猛), Shin-ichi KURODA, Tamio MORI, Katsuhiko HOSOI. High-Density Polyethylene (HDPE) Surface Treatment Using an RF Capacitive Atmospheric Pressure Cold Ar Plasma Jet[J]. Plasma Science and Technology, 2013, 15(6): 577-581. DOI: 10.1088/1009-0630/15/6/16
    [9]FEI Xiaomeng(费小猛), Shin-ichi KURODA, Yuki KONDO, Tamio MORI, Katsuhiko HOSOI. Influence of Additive Gas on Electrical and Optical Characteristics of Non- equilibrium Atmospheric Pressure Argon Plasma Jet[J]. Plasma Science and Technology, 2011, 13(5): 575-582.
    [10]QIAN Muyang(钱沐杨), REN Chunsheng(任春生), WANG Dezhen(王德真), FENG Yan(冯岩), ZHANG Jialiang(张家良). Atmospheric Pressure Cold Argon/Oxygen Plasma Jet Assisted by Preionization of Syringe Needle Electrode[J]. Plasma Science and Technology, 2010, 12(5): 561-565.
  • Cited by

    Periodical cited type(14)

    1. Zhang, C., Song, W., Lyu, Y. et al. Dual-branch convolutional neural network with attention modules for LIBS-NIRS data fusion in cement composition quantification. Analytica Chimica Acta, 2025. DOI:10.1016/j.aca.2025.343899
    2. Jiang, J., Pang, X., Feng, J. et al. Identification of Antibacterial Components from Compound Sophora Flavescens Extract by Mean Impact Value Based on Support Vector Regression | [基于 SVR 模型的 MIV 法的复方苦参抗菌成分的辨识研究]. Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/Journal of Tianjin University Science and Technology, 2025, 58(2): 138-146. DOI:10.11784/tdxbz202401006
    3. Cai, Y., Ma, X., Wang, X. Quantitative analysis of cement raw materials composition by laser-induced breakdown spectroscopy based on iPLS feature band selection. 2025. DOI:10.1145/3704558.3707063
    4. Chang, C., Di Maio, F., Bheemireddy, R. et al. Rapid quality control for recycled coarse aggregates (RCA) streams: Multi-sensor integration for advanced contaminant detection. Computers in Industry, 2025. DOI:10.1016/j.compind.2024.104196
    5. Hao, Z., Liu, K., Lian, Q. et al. Machine learning in laser-induced breakdown spectroscopy: A review. Frontiers of Physics, 2024, 19(6): 62501. DOI:10.1007/s11467-024-1427-2
    6. Cai, Y., Ma, X., Huang, B. et al. LIBS combined with SG-SPXY spectral data pre-processing for cement raw meal composition analysis. Applied Optics, 2024, 63(6): A24-A31. DOI:10.1364/AO.505255
    7. Jia, W., Zhang, Z., Shan, Q. et al. Determination of Molybdenum in Geological Ores by Laser-Induced Breakdown Spectroscopy (LIBS) with Support Vector Machine Regression (SVMR) and Data Preprocessing. Analytical Letters, 2024, 57(13): 2004-2017. DOI:10.1080/00032719.2023.2284216
    8. Zhang, C., Song, W., Hou, Z. et al. Improving quantitative analysis of cement elements in laser-induced breakdown spectroscopy through combining matrix matching with regression. Journal of Analytical Atomic Spectrometry, 2023, 38(12): 2554-2561. DOI:10.1039/d3ja00306j
    9. Luo, X., Chen, R., Kabir, M.H. et al. Fast Detection of Heavy Metal Content in Fritillaria thunbergii by Laser-Induced Breakdown Spectroscopy with PSO-BP and SSA-BP Analysis. Molecules, 2023, 28(8): 3360. DOI:10.3390/molecules28083360
    10. Cabral, J.S., Menegatti, C.R., Nicolodelli, G. Laser-induced breakdown spectroscopy in cementitious materials: A chronological review of cement and concrete from the last 20 years. TrAC - Trends in Analytical Chemistry, 2023. DOI:10.1016/j.trac.2023.116948
    11. Xie, G., Sun, L., Shang, D. et al. Model transfer method based on piecewise direct standardization in laser-induced-breakdown spectroscopy. Applied Optics, 2022, 61(30): 9069-9077. DOI:10.1364/AO.471891
    12. Li, X., Lu, X., Zhang, Y. et al. Effect of the target positions on the rapid identification of aluminum alloys by using filament-induced breakdown spectroscopy combined with machine learning. Chinese Physics B, 2022, 31(5): 054212. DOI:10.1088/1674-1056/ac3810
    13. Wang, G., Sun, L., Wang, W. et al. A feature selection method combined with ridge regression and recursive feature elimination in quantitative analysis of laser induced breakdown spectroscopy. Plasma Science and Technology, 2020, 22(7): 074002. DOI:10.1088/2058-6272/ab76b4
    14. Fu, Y., Hou, Z., Deguchi, Y. et al. From big to strong: Growth of the Asian laser-induced breakdown spectroscopy community. Plasma Science and Technology, 2019, 21(3): 030101. DOI:10.1088/2058-6272/aaf873

    Other cited types(0)

Catalog

    Article views (172) PDF downloads (184) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return