Advanced Search+
Baoyue CHAI (柴宝玥), Yingying LI (李颖颖), Ze CHEN (陈泽), Wei TAO (陶巍), Yixuan ZHOU (周艺轩), Shifeng MAO (毛世峰), Zhengping LUO (罗正平), Yi YU (余羿), Bo LYU (吕波), Minyou YE (叶民友). Fast estimation of ion temperature from EAST charge exchange recombination spectroscopy using neural network[J]. Plasma Science and Technology, 2019, 21(10): 105103. DOI: 10.1088/2058-6272/ab2674
Citation: Baoyue CHAI (柴宝玥), Yingying LI (李颖颖), Ze CHEN (陈泽), Wei TAO (陶巍), Yixuan ZHOU (周艺轩), Shifeng MAO (毛世峰), Zhengping LUO (罗正平), Yi YU (余羿), Bo LYU (吕波), Minyou YE (叶民友). Fast estimation of ion temperature from EAST charge exchange recombination spectroscopy using neural network[J]. Plasma Science and Technology, 2019, 21(10): 105103. DOI: 10.1088/2058-6272/ab2674

Fast estimation of ion temperature from EAST charge exchange recombination spectroscopy using neural network

Funds: This work is supported by National Natural Science Foundation of China (No. 11535013), the National Key Research and Development Program of China (Nos. 2017YFA0402500, 2018YFE0302100), and the Users with Excellence Project of Hefei Science Center CAS (No. 2018HSC-UE010).
More Information
  • Received Date: February 19, 2019
  • Revised Date: June 02, 2019
  • Accepted Date: June 02, 2019
  • Ion temperature, as one of the most critical plasma parameters, can be diagnosed by charge exchange recombination spectroscopy (CXRS). Iterative least-squares fitting is conventionally used to analyze CXRS spectra to identify the active charge exchange component, which is the result of local interaction between impurity ions with a neutral beam. Due to the limit of the time consumption of the conventional approach (∼100 ms per frame), the Experimental Advanced Superconducting Tokamak CXRS data is now analyzed in-between shots. To explore the feasibility of real-time measurement, neural networks are introduced to perform fast estimation of ion temperature. Based on the same four-layer neural network architecture, two neural networks are trained for two central chords according to the ion temperature data acquired from the conventional method. Using the TensorFlow framework, the training procedures are performed by an error back-propagation algorithm with the regularization via the weight decay method. Good agreement in the deduced ion temperature is shown for the neural networks and the conventional approach, while the data processing time is reduced by 3 orders of magnitude (∼0.1 ms per frame) by using the neural networks.
  • [1]
    Li Y Y et al 2014 Rev. Sci. Instrum. 85 11E428
    [2]
    Zhang Y et al 2015 Fusion Eng. Des. 96–97 840
    [3]
    Ye M Y et al 2015 Fusion Eng. Des. 96–97 1017
    [4]
    Li Y Y et al 2016 Rev. Sci. Instrum. 87 11E501
    [5]
    Fonck R J, Darrow D S and Jaehnig K P 1984 Phys. Rev. A 29 3288
    [6]
    Isler R C 1994 Plasma Phys. Control. Fusion 36 171
    [7]
    Seraydarian R P et al 1986 Rev. Sci. Instrum. 57 155
    [8]
    Tunklev M et al 1999 Plasma Phys. Control. Fusion 41 985
    [9]
    Litaudon X 2011 Fusion Sci. Technol. 59 469
    [10]
    Kobayashi S et al 2007 Plasma Fusion Res. 2 S1049
    [11]
    Yoshida M et al 2009 Fusion Eng. Des. 84 2206
    [12]
    Podestà M and Bell R E 2012 Rev. Sci. Instrum. 83 033503
    [13]
    Podestà M and Bell R E 2016 Plasma Phys. Control. Fusion 58 125016
    [14]
    Heesterman P J L et al 2003 Rev. Sci. Instrum. 74 1783
    [15]
    Joffrin E et al 2003 Plasma Phys. Control. Fusion 45 A367
    [16]
    Yu D L et al 2009 Fusion Sci. Technol. 56 1521
    [17]
    Ma Q et al 2015 J. Quant. Spectrosc. Radiat. Transf. 166 74
    [18]
    Bishop C M 1994 Rev. Sci. Instrum. 65 1803
    [19]
    Bishop C M, Roach C M and von Hellermann M G 1993 Plasma Phys. Control. Fusion 35 765
    [20]
    Baker D R, Groebner R J and Burrell K H 1994 Plasma Phys.Control. Fusion 36 109
    [21]
    Svensson J, von Hellermann M and König RWT 1999 Plasma Phys. Control. Fusion 41 315
    [22]
    Kurihara K et al 2008 Fusion Eng. Des. 83 959
    [23]
    Xie Y H et al 2014 Rev. Sci. Instrum. 85 02B315
    [24]
    Viezzer E et al 2011 Plasma Phys. Control. Fusion 53 035002
    [25]
    McCulloch W S and Pitts W H 1943 Bull. Math. Biophys.5 115
    [26]
    Rosenblatt F 1958 Psychol. Rev. 65 386
    [27]
    TensorFlow https://github.com/tensorflow
    [28]
    Huang G B 2003 IEEE Trans. Neural Networks 14 274
    [29]
    Reed R 1993 IEEE Trans. Neural Networks 4 740
    [30]
    Lang K J and Hinton G E 1990 Dimensionality reduction and prior knowledge in E-set recognition ed D S Touretzky Advances in Neural Information Processing Systems 2 (San Francisco: Morgan Kaufmann) vol 1990, 178
    [31]
    Rumelhart D E, Hinton G E and Williams R J 1986 Nature 323 533
  • Related Articles

    [1]Kefeng SHANG (商克峰), Qi ZHANG (张琦), Na LU (鲁娜), Nan JIANG (姜楠), Jie LI (李杰), Yan WU (吴彦). Evaluation on a double-chamber gas-liquid phase discharge reactor for benzene degradation[J]. Plasma Science and Technology, 2019, 21(7): 75502-075502. DOI: 10.1088/2058-6272/ab0d3c
    [2]Yang CAO (曹洋), Guangzhou QU (屈广周), Tengfei LI (李腾飞), Nan JIANG (姜楠), Tiecheng WANG (王铁成). Review on reactive species in water treatment using electrical discharge plasma: formation, measurement, mechanisms and mass transfer[J]. Plasma Science and Technology, 2018, 20(10): 103001. DOI: 10.1088/2058-6272/aacff4
    [3]Sen WANG (王森), Dezheng YANG (杨德正), Feng LIU (刘峰), Wenchun WANG (王文春), Zhi FANG (方志). Spectroscopic study of bipolar nanosecond pulse gas-liquid discharge in atmospheric argon[J]. Plasma Science and Technology, 2018, 20(7): 75404-075404. DOI: 10.1088/2058-6272/aabac8
    [4]Zelong ZHANG (张泽龙), Jie SHEN (沈洁), Cheng CHENG (程诚), Zimu XU (许子牧), Weidong XIA (夏维东). Generation of reactive species in atmospheric pressure dielectric barrier discharge with liquid water[J]. Plasma Science and Technology, 2018, 20(4): 44009-044009. DOI: 10.1088/2058-6272/aaa437
    [5]Yanliang PEI (裴彦良), Liancheng ZHANG (张连成), Yifan HUANG (黄逸凡), Hui YAN (严辉), Xinlei ZHU (朱鑫磊), Zhen LIU (刘振), Keping YAN (闫克平). Discharge electrode configuration effects on the performance of a plasma sparker[J]. Plasma Science and Technology, 2017, 19(9): 95401-095401. DOI: 10.1088/2058-6272/aa7332
    [6]Feng LIU (刘峰), Bo ZHANG (张波), Zhi FANG (方志), Wenchun WANG (王文春). Generation of reactive atomic species of positive pulsed corona discharges in wetted atmospheric flows of nitrogen and oxygen[J]. Plasma Science and Technology, 2017, 19(6): 64008-064008. DOI: 10.1088/2058-6272/aa632f
    [7]QI Xiaohua (齐晓华), YANG Liang (杨亮), YAN Huijie (闫慧杰), JIN Ying (金英), HUA Yue (滑跃), REN Chunsheng (任春生). Experimental Study on Surface Dielectric Barrier Discharge Plasma Actuator with Different Encapsulated Electrode Widths for Airflow Control at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(10): 1005-1011. DOI: 10.1088/1009-0630/18/10/07
    [8]WANG Yanhui (王艳辉), YE Huanhuan (叶换换), ZHANG Jiao (张佼), WANG Qi (王奇), ZHANG Jie (张杰), WANG Dezhen (王德真). Numerical Study of Pulsed Dielectric Barrier Discharge at Atmospheric Pressure Under the Needle-Plate Electrode Configuration[J]. Plasma Science and Technology, 2016, 18(5): 478-484. DOI: 10.1088/1009-0630/18/5/06
    [9]XIN Qing (辛青), ZHANG Yi (张轶), WU Kaibin (巫开斌). Degradation of Microcystin-LR by Gas-Liquid Interfacial Discharge Plasma[J]. Plasma Science and Technology, 2013, 15(12): 1221-1225. DOI: 10.1088/1009-0630/15/12/11
    [10]GONG Jianying (巩建英), ZHANG Xingwang (张兴旺), WANG Xiaoping (王小平), LEI Lecheng (雷乐成). Oxidation of S(IV) in Seawater by Pulsed High Voltage Discharge Plasma with TiO 2 /Ti Electrode as Catalyst[J]. Plasma Science and Technology, 2013, 15(12): 1209-1214. DOI: 10.1088/1009-0630/15/12/09

Catalog

    Article views (436) PDF downloads (112) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return