Advanced Search+
Cheng FENG (冯诚), Yibo HU (胡一波), Chenggang JIN (金成刚), Lanjian ZHUGE (诸葛兰剑), Xuemei WU (吴雪梅), Wenli WANG (王文利). The effect of atmospheric pressure glow discharge plasma treatment on the dyeing properties of silk fabric[J]. Plasma Science and Technology, 2020, 22(1): 15503-015503. DOI: 10.1088/2058-6272/ab4c4e
Citation: Cheng FENG (冯诚), Yibo HU (胡一波), Chenggang JIN (金成刚), Lanjian ZHUGE (诸葛兰剑), Xuemei WU (吴雪梅), Wenli WANG (王文利). The effect of atmospheric pressure glow discharge plasma treatment on the dyeing properties of silk fabric[J]. Plasma Science and Technology, 2020, 22(1): 15503-015503. DOI: 10.1088/2058-6272/ab4c4e

The effect of atmospheric pressure glow discharge plasma treatment on the dyeing properties of silk fabric

Funds: This work is financially supported by National Natural Science Foundation of China (Nos. 11435009, 1137516, 11505123), a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the Program for Graduates Research & Innovation in University of Jiangsu Province (No. KYCX17_2025).
More Information
  • Received Date: April 07, 2019
  • Revised Date: October 04, 2019
  • Accepted Date: October 08, 2019
  • In this study, the effects of plasma treatment parameters on surface morphology, chemical constituent, dyeability and color fastness of silk fabric were investigated. Atmospheric pressure glow discharge plasma generated with different applied voltages (0 kV to 45 kV) was used to treat the surface of silk fabrics. C I Natural Yellow 3 was used to dye untreated and plasmatreated silk fabrics. The physical analysis based on scanning electron microscopy showed that the surface of silk fabrics was affected by plasma treatment. The chemical analysis was investigated with x-ray photoelectron spectroscopy and attenuated total reflection Fourier transform infrared spectroscopy. The results showed that the content of C 1s decreased with the increasing applied voltage, the content of N 1s and O 1s increased with the increasing applied voltage. The increasing K/S values represented that the dyeability of silk fabrics was improved after plasma treatment. The color fastness to dry and wet rubbing was decreased after plasma treatment.
  • [1]
    Ali S, Hussain T and Nawaz R 2009 J. Clean Prod. 17 61
    [2]
    Dayioglu H et al 2016 Tekstil ve Konfeksiyon 26 262
    [3]
    Kan C W, Lam Y L and Li M Y 2016 Colora. Technol. 132 9
    [4]
    Yuan J G, Wang Q and Fan X R 2010 J. Appl. Poly. Sci.117 2278
    [5]
    Shanker R and Vankar P S 2007 Dyes Pigments 74 464
    [6]
    Anand P et al 2007 Mol. Pharmaceut. 4 807
    [7]
    Prusty A K et al 2010 J. Clean. Prod. 18 1750
    [8]
    Nadiger G S and Bhat N V 1985 J. Appl. Poly. Sci. 30 4127
    [9]
    Zille A, Oliveira F R and Souto A P 2015 Plasma Process.Polym. 12 985
    [10]
    Guimond S et al 2002 Plasma Ploym. 7 71
    [11]
    Tendero C et al 2006 Spectrochim. Acta B 61 2
    [12]
    Tyata R B et al 2013 Pramana 80 507
    [13]
    Kutlu B, Aksit A and Mutlu M 2010 J. Appl. Poly. Sci.116 1545
    [14]
    Panda P K et al 2011 J. Appl. Poly. Sci. 124 4289
    [15]
    Teli M D et al 2015 Fiber. Ploym. 16 2375
    [16]
    Hu Y B et al 2019 IEEE. Trans. Plasma Sci. 47 2629
    [17]
    ISO 105-X12 2016 https://iso.org/standard/65207.html
    [18]
    Lee J et al 2013 Materials 6 2007
    [19]
    Wang D H et al 2014 J. Mater. Chem. A 2 17415
    [20]
    Heeg J, Schubert U and Küchenmeister F 2000 Mikrochim.Acta 133 113
    [21]
    Shao J Z et al 2002 Polym. Int. 51 1479
    [22]
    Peng M Y et al 2017 Coatings 7 123
    [23]
    Tawil N et al 2013 J. Phys. Chem. C 117 20656
    [24]
    Vladimir M et al 2014 J. Phys. Soc. Jpn. 83 014501
    [25]
    Zhang Y et al 2016 Spectrochim. Acta Part A 168 230
    [26]
    Abdel-Fattah E et al 2017 Eur. Phys. J. D 71 178
    [27]
    Yaman N et al 2009 Appl. Surf. Sci. 255 6764
    [28]
    Ibrahim N A et al 2010 Carbohydr. Polym. 82 1205
    [29]
    Mansour H 2013 Textile Dyeing: Environmental Friendly Osage Orange Extract on Protein Fabrics (London:IntechOpen) 207
    [30]
    Ghoreishian S M et al 2013 Fiber. Ploym. 14 201
  • Related Articles

    [1]Luyun JIANG, Yutong CHEN, Chentao MAO, Jianhui HAN, Anmin CHEN, Jifei YE. Performance optimization of ammonium dinitramide-based liquid propellant in pulsed laser ablation micro-propulsion using LIBS[J]. Plasma Science and Technology, 2025, 27(1): 015503. DOI: 10.1088/2058-6272/ad92f8
    [2]Yihan LYU, Weiran SONG, Zongyu HOU, Zhe WANG. Incorporating empirical knowledge into data-driven variable selection for quantitative analysis of coal ash content by laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2024, 26(7): 075509. DOI: 10.1088/2058-6272/ad370c
    [3]Jiajia HOU (侯佳佳), Lei ZHANG (张雷), Yang ZHAO (赵洋), Zhe WANG (王哲), Yong ZHANG (张勇), Weiguang MA (马维光), Lei DONG (董磊), Wangbao YIN (尹王保), Liantuan XIAO (肖连团), Suotang JIA (贾锁堂). Mechanisms and efficient elimination approaches of self-absorption in LIBS[J]. Plasma Science and Technology, 2019, 21(3): 34016-034016. DOI: 10.1088/2058-6272/aaf875
    [4]Xiaomeng LI (李晓萌), Huili LU (陆慧丽), Jianhong YANG (阳建宏), Fu CHANG (常福). Semi-supervised LIBS quantitative analysis method based on co-training regression model with selection of effective unlabeled samples[J]. Plasma Science and Technology, 2019, 21(3): 34015-034015. DOI: 10.1088/2058-6272/aaee14
    [5]Minchao CUI (崔敏超), Yoshihiro DEGUCHI (出口祥啓), Zhenzhen WANG (王珍珍), Seiya TANAKA (田中诚也), Min-Gyu JEON (全敏奎), Yuki FUJITA (藤田裕贵), Shengdun ZHAO (赵升吨). Remote open-path laser-induced breakdown spectroscopy for the analysis of manganese in steel samples at high temperature[J]. Plasma Science and Technology, 2019, 21(3): 34007-034007. DOI: 10.1088/2058-6272/aaeba7
    [6]Shuxia ZHAO (赵书霞), Lei ZHANG (张雷), Jiajia HOU (侯佳佳), Yang ZHAO (赵洋), Wangbao YIN (尹王保), Weiguang MA (马维光), Lei DONG (董磊), Liantuan XIAO (肖连团), Suotang JIA (贾锁堂). Accurate quantitative CF-LIBS analysis of both major and minor elements in alloys via iterative correction of plasma temperature and spectral intensity[J]. Plasma Science and Technology, 2018, 20(3): 35502-035502. DOI: 10.1088/2058-6272/aa97ce
    [7]Dongxu CHEN (陈东旭), Yilun ZHU (朱逸伦), Zhenling ZHAO (赵朕领), Chengming QU (渠承明), Wang LIAO (廖望), Jinlin XIE (谢锦林), Wandong LIU (刘万东). An intelligent remote control system for ECEI on EAST[J]. Plasma Science and Technology, 2017, 19(8): 84005-084005. DOI: 10.1088/2058-6272/aa6e4a
    [8]ZHONG Shilei (钟石磊), ZHENG Ronger (郑荣儿), LU Yuan (卢渊), CHENG Kai (程凯), XIU Junshan (修俊山). Ultrasonic Nebulizer Assisted LIBS: a Promising Metal Elements Detection Method for Aqueous Sample Analysis[J]. Plasma Science and Technology, 2015, 17(11): 979-984. DOI: 10.1088/1009-0630/17/11/17
    [9]LIU Xiaona (刘晓娜), HUANG Jianmei (黄建梅), WU Zhisheng (吴志生), ZHANG Qiao (张乔), SHI Xinyuan (史新元), ZHAO Na (赵娜), JIA Shuaiyun (贾帅芸), QIAO Yanjiang (乔延江). Microanalysis of Multi-Element in Juncus effusus L. by LIBS Technique[J]. Plasma Science and Technology, 2015, 17(11): 904-908. DOI: 10.1088/1009-0630/17/11/02
    [10]WEN Guanhong(温冠宏), SUN Duixiong(孙对兄), SU Maogen(苏茂根), DONG Chenzhong(董晨钟). LIBS Detection of Heavy Metal Elements in Liquid Solutions by Using Wood Pellet as Sample Matrix[J]. Plasma Science and Technology, 2014, 16(6): 598-601. DOI: 10.1088/1009-0630/16/6/11
  • Cited by

    Periodical cited type(5)

    1. Niu, Y., Bao, W., Liu, D. et al. Analysis of enthalpy and energy conversion efficiency in high-power inductively coupled plasma. Vacuum, 2024. DOI:10.1016/j.vacuum.2024.113220
    2. Zhou, X., Chen, X., Ye, T. et al. Quasi-direct numerical simulations of the flow characteristics of a thermal plasma reactor with counterflow jet. Plasma Science and Technology, 2023, 25(7): 075403. DOI:10.1088/2058-6272/acb9d8
    3. Niu, Y., Bao, W., Liu, D. et al. Thermodynamic Parameters and Energy Transfer Analysis of High Enthalpy Inductively Coupled Plasma. 2023. DOI:10.1109/CSRSWTC60855.2023.10427285
    4. Zhou, X., Chen, X., Ye, T. et al. Numerical study of the effect of coflow argon jet on a laminar argon thermal plasma jet. Plasma Science and Technology, 2022, 24(5): 055409. DOI:10.1088/2058-6272/ac52eb
    5. Bykov, N.Y., Obraztsov, N.V., Hvatov, A.A. et al. Hybrid modeling of gas-dynamic processes in AC plasma torches. Materials Physics and Mechanics, 2022, 50(2): 287-303. DOI:10.18149/MPM.5022022_9

    Other cited types(0)

Catalog

    Article views (161) PDF downloads (152) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return