Advanced Search+
Jun JIANG (江军), Kai WANG (王凯), Xuerui WU (吴雪瑞), Guoming MA(马国明), Chaohai ZHANG (张潮海). Characteristics of the propagation of partial discharge ultrasonic signals on a transformer wall based on Sagnac interference[J]. Plasma Science and Technology, 2020, 22(2): 24002-024002. DOI: 10.1088/2058-6272/ab54d4
Citation: Jun JIANG (江军), Kai WANG (王凯), Xuerui WU (吴雪瑞), Guoming MA(马国明), Chaohai ZHANG (张潮海). Characteristics of the propagation of partial discharge ultrasonic signals on a transformer wall based on Sagnac interference[J]. Plasma Science and Technology, 2020, 22(2): 24002-024002. DOI: 10.1088/2058-6272/ab54d4

Characteristics of the propagation of partial discharge ultrasonic signals on a transformer wall based on Sagnac interference

Funds: This work is supported by National Natural Science Foundation of China (No. 51807088), the Natural Science Foundation of Jiangsu Province (No. BK20170786), the State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (No. LAPS19010), Project funded by China Postdoctoral Science Foundation, the Fundamental Research Funds for the Central Universities (Nos. NS2018027, kfjj20190304), and the Jiangsu Planned Projects for Postdoctoral Research Funds. The authors gratefully acknowledge financial support from the China Scholarship Council (No. 201906835029).
More Information
  • Received Date: September 11, 2019
  • Revised Date: November 02, 2019
  • Accepted Date: November 05, 2019
  • The acoustic emission (AE) method has been widely recognized for the detection of incipient insulation fault phenomenon (partial discharge, PD) in power transformers, nevertheless, the installation and placement of AE sensors should be taken into full consideration. In this manuscript, a three-dimensional multiphysics model was established and simulated to research the characteristics of the propagation in the transformer wall. Furthermore, a piezoelectric transducer was used to detect PD ultrasonic signals and verify the simulation results in the laboratory. To ensure the accuracy of the detection, an optical fiber sensor based on the Sagnac interference principle was designed and adopted. The variation of the amplitude of the ultrasonic signal with distance reveals the characteristics of the ultrasonic signal propagating in the transformer wall. The distribution of sound pressure on the upper and lower surfaces of the simulation model proved that ultrasonic waves propagate in the form of symmetrical Lamb waves in the transformer wall. Moreover, the amplitude of the AE attenuates due to absorption and refraction loss, and local fluctuations on account of acoustic interference. Thus, a stable signal detected by an AE sensor does not represent the absence of PD in a transformer. To improve the reliability of AE detection, it is proposed in this manuscript that repeated movement of the AE sensor is necessary to obtain a suitable measurement position. Similarly, it is necessary to adjust the position of the AE sensor in order to locate the PD source well. In addition, this study is expected to provide a theoretical analysis and a fiber sensor to address the problem of sensor placement in AE detection.
  • [1]
    Wang Y B et al 2017 IEEE Trans. Dielectr. Electr. Insul.24 3647
    [2]
    Jiang J et al 2018 IEEE Sens. J. 18 7122
    [3]
    Álvarez F et al 2015 Sensors 15 7360
    [4]
    Boczar T et al 2017 IEEE Trans. Dielectr. Electr. Insul.24 120
    [5]
    Rodrigo Mor A, Castro Heredia L C and Muñoz F A 2018 Sensors 18 4482
    [6]
    Hu Y et al 2019 IEEE Trans. Instrum. Meas. 68 1844
    [7]
    Rodrigo A et al 2011 IEEE Trans. Dielectr. Electr. Insul.18 1798
    [8]
    Coenen S and Tenbohlen S 2012 IEEE Trans. Dielectr. Electr.Insul. 19 1934
    [9]
    Birlasekaran S and Leong W H 2007 IEEE Trans. Power Syst.Deliv. 22 1581
    [10]
    Hekmati A 2015 Appl. Acoust. 100 26
    [11]
    Zheng Z Y et al 2014 Plasma Sci. Technol. 16 1032
    [12]
    Sikorski W 2019 Energies 12 115
    [13]
    Siegel M et al 2017 IEEE Trans. Dielectr. Electr. Insul. 24 331
    [14]
    Luo Y F et al 2015 IEEE Sens. J. 15 2316
    [15]
    Jiang J et al 2019 IEEE Access 7 47221
    [16]
    Liu H L 2016 Applied Acoustics 102 71
    [17]
    Swedan A, El-Hag A H and Assaleh K 2012 Insight: Non-Destr. Test. Cond. Monit. 54 667
    [18]
    Ma B et al 2018 Electr. Eng. Mater. 3 35 (in Chinese)
    [19]
    Ramírez-Niño J and Pascacio A 2009 Meas. Sci. Technol. 20 115108
    [20]
    Wotzka D, Boczar T and Fracz P 2011 Acta Phys. Pol. A 120 767
    [21]
    Akumu A O et al 2001 A study of partial discharge acoustic signal propagation in a model transformer Proc. 2001 Int.Symp. on Electrical Insulating Materials. 2001 Asian Conf.on Electrical Insulating Diagnosis. 33rd Symp. on Electrical and Eletronic Insulating Materials and Applications in Systems (IEEE Cat. No.01TH8544) (Piscataway, NJ: IEEE) 2001 pp 583–6
    [22]
    Xie Q et al 2013 Proc. CSEE 33 185 (in Chinese)
    [23]
    Ma G et al 2019 IEEE Sens. J. 19 9235
    [24]
    Ma G M et al 2019 IEEE Trans. Power Deliv. 34 1324
    [25]
    De Castro B A et al 2017 IEEE Sens. J. 17 6090
    [26]
    Qian S et al 2018 IEEE Trans. Dielectr. Electr. Insul. 25 2313
  • Related Articles

    [1]Yuwen Yang, bin Li, Jianglong Wei, Lizhen Liang, Yahong Xie, Chundong Hu. Physics design of electron dumps for the beamline of CFEDR advance neutral beam equipment (CANBE)[J]. Plasma Science and Technology. DOI: 10.1088/2058-6272/adcb18
    [2]Liang HAN (韩亮), Jun GAO (高俊), Tao CHEN (陈涛), Yuntian CONG (丛云天), Zongliang LI (李宗良). A method to measure the in situ magnetic field in a Hall thruster based on the Faraday rotation effect[J]. Plasma Science and Technology, 2019, 21(8): 85502-085502. DOI: 10.1088/2058-6272/ab0f63
    [3]Wei WANG (汪为), Lanxiang SUN (孙兰香), Peng ZHANG (张鹏), Liming ZHENG (郑黎明), Lifeng QI (齐立峰), Wei DONG (董伟). A method of laser focusing control in micro-laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2019, 21(3): 34004-034004. DOI: 10.1088/2058-6272/aae383
    [4]Jianglong WEI (韦江龙), Yahong XIE (谢亚红), Caichao JIANG (蒋才超), Lizhen LIANG (梁立振), Qinglong CUI (崔庆龙), Shiyong CHEN (陈世勇), Yongjian XU (许永建), Yan WANG (王艳), Li ZHANG (张黎), Yuanlai XIE (谢远来), Chundong HU (胡纯栋). Hefei utility negative ions test equipment with RF source: commissioning and first results[J]. Plasma Science and Technology, 2018, 20(12): 125601. DOI: 10.1088/2058-6272/aadc06
    [5]Tao ZHU (竹涛), Ruonan WANG (王若男), Wenjing BIAN (边文璟), Yang CHEN (陈扬), Weidong JING (景伟东). Advanced oxidation technology for H2S odor gas using non-thermal plasma[J]. Plasma Science and Technology, 2018, 20(5): 54007-054007. DOI: 10.1088/2058-6272/aaae62
    [6]K OGAWA, T NISHITANI, M ISOBE, M SATO, M YOKOTA, H HAYASHI, T KOBUCHI, T NISHIMURA. Effects of gamma-ray irradiation on electronic and non-electronic equipment of Large Helical Device[J]. Plasma Science and Technology, 2017, 19(2): 25601-025601. DOI: 10.1088/2058-6272/19/2/025601
    [7]ZENG Wubing(曾武兵), DING Yonghua(丁永华), YI Bin(易斌), XU Hangyu(许航宇), RAO Bo(饶波), ZHANG Ming(张明), LIU Minghai(刘明海). New Current Control Method of DC Power Supply for Magnetic Perturbation Coils on J-TEXT[J]. Plasma Science and Technology, 2014, 16(11): 1074-1078. DOI: 10.1088/1009-0630/16/11/14
    [8]ZHU Yuanfeng(祝远锋), CHEN Mingyang(陈明阳), WANG Hua(王华), ZHANG Yongkang(张永康), YANG Jichang(杨继昌). Design of a Surface-Plasmon-Resonance Sensor Based on a Microstructured Optical Fiber with Annular-Shaped Holes[J]. Plasma Science and Technology, 2014, 16(9): 867-872. DOI: 10.1088/1009-0630/16/9/11
    [9]QIN Long(秦龙), ZHAO Qing(赵青), LIU Shuzhang(刘述章). Design of Millimeter-Wave High-Power Power Monitoring Miter Bend Based on Aperture-Coupling[J]. Plasma Science and Technology, 2014, 16(7): 712-715. DOI: 10.1088/1009-0630/16/7/14
    [10]CHEN Junjie (陈均杰), LI Guoqiang (李国强), QIAN Jinping (钱金平), LIU Zixi (刘子奚). Ideal MHD Stability Prediction and Required Power for EAST Advanced Scenario[J]. Plasma Science and Technology, 2012, 14(11): 947-952. DOI: 10.1088/1009-0630/14/11/01
  • Cited by

    Periodical cited type(13)

    1. Kim, M.H., Jeon, J.E., Hong, S.J. In-Situ Plasma Monitoring Using Multiple Plasma Information in SiO2 Etch Process. IEEE Transactions on Semiconductor Manufacturing, 2025. DOI:10.1109/TSM.2025.3559301
    2. Eom, G.W., Lee, S.H., Park, I.Y. et al. Analysis of Gas Detection Sensitivity of a Self Plasma-Optical Emission Spectrometer Using an N2 and Ar Gas-Mixing Evaluation System. Applied Science and Convergence Technology, 2024, 33(5): 130-134. DOI:10.5757/ASCT.2024.33.5.130
    3. An, S., Choi, J.E., Kang, J.E. et al. Eco-Friendly Dry-Cleaning and Diagnostics of Silicon Dioxide Deposition Chamber. IEEE Transactions on Semiconductor Manufacturing, 2024, 37(2): 207-221. DOI:10.1109/TSM.2024.3365827
    4. Kim, D., Na, S., Kim, H. et al. Methodology for Plasma Diagnosis and Accurate Virtual Measurement Modeling Using Optical Emission Spectroscopy. IEEE Sensors Journal, 2023, 23(8): 8867-8875. DOI:10.1109/JSEN.2023.3251343
    5. Cho, C., Kim, S., Lee, Y. et al. Determination of Plasma Potential Using an Emissive Probe with Floating Potential Method. Materials, 2023, 16(7): 2762. DOI:10.3390/ma16072762
    6. Park, H.K., Song, W.S., Hong, S.J. In Situ Plasma Impedance Monitoring of the Oxide Layer PECVD Process. Coatings, 2023, 13(3): 559. DOI:10.3390/coatings13030559
    7. Han, C., Koo, Y., Kim, J. et al. Wafer Type Ion Energy Monitoring Sensor for Plasma Diagnosis. Sensors, 2023, 23(5): 2410. DOI:10.3390/s23052410
    8. An, S., Hong, S.J. Spectroscopic Analysis of NF3 Plasmas with Oxygen Additive for PECVD Chamber Cleaning. Coatings, 2023, 13(1): 91. DOI:10.3390/coatings13010091
    9. Lee, Y.J., Kwon, H.J., Seok, Y. et al. IOT-based in situ condition monitoring of semiconductor fabrication equipment for e-maintenance. Journal of Quality in Maintenance Engineering, 2022, 28(4): 736-747. DOI:10.1108/JQME-10-2020-0113
    10. Kim, S.-J., Seong, I.-H., Lee, Y.-S. et al. Development of a High-Linearity Voltage and Current Probe with a Floating Toroidal Coil: Principle, Demonstration, Design Optimization, and Evaluation. Sensors, 2022, 22(15): 5871. DOI:10.3390/s22155871
    11. Kim, J.-H., Koo, Y., Song, W. et al. On‐Wafer Temperature Monitoring Sensor for Condition Monitoring of Repaired Electrostatic Chuck. Electronics (Switzerland), 2022, 11(6): 880. DOI:10.3390/electronics11060880
    12. An, S.-R., Choi, J.E., Hong, S.J. In-situ process monitoring for eco-friendly chemical vapor deposition chamber cleaning. Journal of the Korean Physical Society, 2021, 79(11): 1027-1036. DOI:10.1007/s40042-021-00307-8
    13. Lee, Y., Song, W., Hong, S.J. In situ monitoring of plasma ignition step in capacitively coupled plasma systems. Japanese Journal of Applied Physics, 2020, 59(SJ): SJJD02. DOI:10.35848/1347-4065/ab85de

    Other cited types(0)

Catalog

    Article views (181) PDF downloads (178) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return