Advanced Search+
K NAVANEETHA PANDIYARAJ, D VASU, P V A PADMANABHAN, M PICHUMANI, R R DESHMUKH, V KANDAVELU. Evaluation of influence of cold atmospheric pressure argon plasma operating parameters on degradation of aqueous solution of Reactive Blue 198 (RB-198)[J]. Plasma Science and Technology, 2020, 22(5): 55504-055504. DOI: 10.1088/2058-6272/ab568d
Citation: K NAVANEETHA PANDIYARAJ, D VASU, P V A PADMANABHAN, M PICHUMANI, R R DESHMUKH, V KANDAVELU. Evaluation of influence of cold atmospheric pressure argon plasma operating parameters on degradation of aqueous solution of Reactive Blue 198 (RB-198)[J]. Plasma Science and Technology, 2020, 22(5): 55504-055504. DOI: 10.1088/2058-6272/ab568d

Evaluation of influence of cold atmospheric pressure argon plasma operating parameters on degradation of aqueous solution of Reactive Blue 198 (RB-198)

Funds: The corresponding author Dr K N Pandiyaraj would like to express his sincere gratitude to DST-SERB, Government of India for providing the financial support (EMR/2016/006812 Dated: 02-Nov-2017). Dr M Pichumani would like to thank The Management, Sri Ramakrishna Engineering College, Coimbatore, India and Government of India—DST INSPIRE Project 04/2013/000209.
More Information
  • Received Date: July 30, 2019
  • Revised Date: November 08, 2019
  • Accepted Date: November 11, 2019
  • The intention of this work is to remove Reactive Blue 198 (RB-198) dye components from simulated water solution using cold atmospheric pressure argon plasma jet. Aqueous solutions of RB-198 dye were treated as a function of various operating parameters such as applied potential, reaction time and distance between the plasma jet and surface of the liquid. The efficiency of the degradation of RB-198 molecules was explored by means of UV-Vis spectroscopy. The reactive species involved during the treatment process were examined by optical emission spectra (OES). The present hydroxyl radicals (OH• radical) and hydrogen peroxide (H2O2) in the plasma-treated aqueous dye solutions were investigated using various spectroscopic techniques. The other parameters such as total organic carbon (TOC), conductivity and pH were also reviewed. The toxicity of plasma-treated RB-198 solution was finally studied by diffusion bacterial analysis and by tracking seed germination processes. The results show that a higher degradation percentage of 99.27% was acquired for the RB-198 treated at higher reaction time and applied potential, and shorter distance between the plasma jet and water surface. This may be due to the formation of various reactive oxygen (OH• radical, atomic oxygen (O) and H2O2) and nitrogen species (nitric oxide (NO) radicals and N2 second positive system (N2 SPS)) during the processes as confirmed by OES analysis and other spectroscopy analysis. TOC (17.7%–81.8%) and pH (7.5–3.4) values of the plasma-treated RB-198 decreased significantly with respect to various operation parameters, which indicates the decomposition of RB-198 molecules in the aqueous solution. Moreover, the conductivity of plasma-treated RB-198 aqueous solutions was found to have increased linearly during the plasma treatment due to the formation of various ionic species in aqueous solution. The toxicity analysis clearly exhibits the non-toxic behavior of plasma-treated RB-198 aqueous solution towards the bacterial growth and germination of seeds.
  • [1]
    Hayashi Y et al 2014 Jpn. J. Appl. Phys. 53 010212
    [2]
    Wang T C et al 2016 Environ. Sci. Pollut. Res. 23 13448
    [3]
    Jiang B et al 2013 Chem. Eng. J. 215–216 969
    [4]
    Reyes P et al 1999 Biotechnol. Lett 21 875
    [5]
    Nguyen V C, Nguyen N L G and Pho Q H 2015 Adv. Nat. Sci.Nanosci. Nanotechnol. 6 035001
    [6]
    Yang X F et al 2015 Appl. Catal. B 166–167 231
    [7]
    Watharkar A D et al 2015 J. Hazard. Mater. 283 698
    [8]
    Yan J J et al 2015 J. Hazard. Mater. 283 730
    [9]
    Manoj Kumar Reddy P, Mahammadunnisa S and Subrahmanyam C 2014 Indian J. Chem. 53A 499
    [10]
    Nikiforov A Y 2009 IEEE Trans. Plasma Sci. 37 872
    [11]
    Gerrity D et al 2010 Water Res. 44 493
    [12]
    Magureanu M, Bradu C and Parvulescu V I 2018 J. Phys. D Appl. Phys. 51 313002
    [13]
    Song W et al 2019 J. Environ. Sci. 83 1–7
    [14]
    Jamroz P, Dzimitrowicz A and Pohl P 2018 Plasma Process Polym. 15 1700083
    [15]
    Attri P et al 2016 Sci. Rep. 6 34419
    [16]
    Rahimpour M et al 2019 J. Environ. Chem. Eng. 18 103220
    [17]
    Wang X J et al 2019 Chemosphere 232 462
    [18]
    Hentit H et al 2014 J. Mol. Catal. A Chem. 390 37
    [19]
    Page S E, Arnold W A and McNeill K 2010 J. Environ. Monit.12 1658
    [20]
    Sellers R M 1980 Analyst 105 950
    [21]
    Sivachandiran L and Khacef A 2017 RSC Adv. 7 1822
    [22]
    Kim Y H et al 2014 Plasma Chem. Plasma Process. 34 457
    [23]
    National Institute of Standard and Technology (NIST Database) (https://physics.nist.gov/PhysRefData/Handbook/periodictable.htm)
    [24]
    Shaw P et al 2018 Sci. Rep. 8 11268
    [25]
    Attri P et al 2015 Sci. Rep. 5 9332
    [26]
    Barkhordari A et al 2017 J. Theor. Appl. Phys. 11 301
    [27]
    Onyshchenko I et al 2015 Plasma Processes Polym. 12 466
    [28]
    Jamróz P et al 2014 Plasma Chem. Plasma Process. 34 25
    [29]
    Rezaei F et al 2018 Plasma Processes Polym. 15 1700226
    [30]
    Rajkumar K and Muthukumar M 2017 Int. J. Environ. Sci. Nat.Res. 1 555570
    [31]
    Rajkumar D, Song B J and Kim J G 2007 Dyes Pigm. 72 1
    [32]
    Kanazawa S et al 2012 Int. J. Plasma Environ. Sci. Technol. 6 166
    [33]
    Manoj Kumar Reddy P and Subrahmanyam C 2012 Ind. Eng.Chem. Res. 51 11097
    [34]
    García M C et al 2017 Chemosphere 180 239
    [35]
    Sun Y et al 2016 Chemosphere 155 243
    [36]
    Zhou R W et al 2016 Sci. Rep. 6 39552
    [37]
    Wang T C et al 2016 J. Hazard. Mater. 302 65
    [38]
    Huang F M et al 2010 Chem. Eng. J. 162 250
    [39]
    He B B et al 2017 J. Phys. D: Appl. Phys. 50 445207
    [40]
    Mizuno A 2013 Catal. Today 211 2
    [41]
    Wang J et al 2016 Chem. Eng. J. 300 36
    [42]
    De Brito Benetoli L O et al 2012 J. Hazard. Mater. 237–238 55
    [43]
    Locke B R et al 2006 Ind. Eng. Chem. Res. 45 882
    [44]
    Tang Q et al 2009 Plasma Chem. Plasma Process. 29 291
    [45]
    Magureanu M et al 2013 Plasma Chem. Plasma Process. 33 51
    [46]
    Matinzadeh Z et al 2017 J. Theor. Appl. Phys. 11 97
    [47]
    Lukes P et al 2005 J. Phys. D Appl. Phys. 38 409
    [48]
    Bansode A S et al 2017 Chemosphere 167 396
  • Related Articles

    [1]Muhammad Ajmal KHAN, Jing LI (李静), Heping LI (李和平), Hafiz Imran Ahmad QAZI. Characteristics of a radio-frequency cold atmospheric plasma jet produced with a hybrid cross-linear-field electrode configuration[J]. Plasma Science and Technology, 2019, 21(5): 55401-055401. DOI: 10.1088/2058-6272/ab004b
    [2]Xiaoming ZHU (朱晓鸣), Heng GUO (郭恒), Jianfeng ZHOU (周建锋), Xiaofei ZHANG (张晓菲), Jian CHEN (陈坚), Jing LI (李静), Heping LI (李和平), Jianguo TAN (谭建国). Influences of the cold atmospheric plasma jet treatment on the properties of the demineralized dentin surfaces[J]. Plasma Science and Technology, 2018, 20(4): 44010-044010. DOI: 10.1088/2058-6272/aaa6be
    [3]CHEN Bingyan (陈秉岩), ZHU Changping (朱昌平), CHEN Longwei (陈龙威), FEI Juntao (费峻涛), GAO Ying (高莹), WEN Wen (文文), SHAN Minglei (单鸣雷), REN Zhaoxing (任兆杏). Atmospheric Pressure Plasma Jet in Organic Solution: Spectra, Degradation Effects of Solution Flow Rate and Initial pH Value[J]. Plasma Science and Technology, 2014, 16(12): 1126-1134. DOI: 10.1088/1009-0630/16/12/08
    [4]Asma BEGUM, Mounir LAROUSSI, M. R. PERVEZ. A Brief Study on the Ignition of the Non-Thermal Atmospheric Pressure Plasma Jet from a Double Dielectric Barrier Configured Plasma Pencil[J]. Plasma Science and Technology, 2013, 15(7): 627-634. DOI: 10.1088/1009-0630/15/7/05
    [5]FEI Xiaomeng (费小猛), Shin-ichi KURODA, Tamio MORI, Katsuhiko HOSOI. High-Density Polyethylene (HDPE) Surface Treatment Using an RF Capacitive Atmospheric Pressure Cold Ar Plasma Jet[J]. Plasma Science and Technology, 2013, 15(6): 577-581. DOI: 10.1088/1009-0630/15/6/16
    [6]LIU Xiaohu (刘小虎), HONG Feng (洪枫), GUO Ying (郭颖), ZHANG Jing (张菁), SHI Jianjun (石建军). Sterilization of Staphylococcus Aureus by an Atmospheric Non-Thermal Plasma Jet[J]. Plasma Science and Technology, 2013, 15(5): 439-442. DOI: 10.1088/1009-0630/15/5/09
    [7]DI Lanbo, LI Xiaosong, ZHAO Tianliang, CHANG Dalei, LIU Qianqian, ZHU Aimin. Tuning Effect of N2 on Atmospheric-Pressure Cold Plasma CVD of TiO2 Photocatalytic Films[J]. Plasma Science and Technology, 2013, 15(1): 64-69. DOI: 10.1088/1009-0630/15/1/11
    [8]LV Xiaogui (吕晓桂), REN Chunsheng (任春生), MA Tengcai (马腾才), Feng Yan (冯岩), WANG Dezhen (王德真). An Atmospheric Large-Scale Cold Plasma Jet[J]. Plasma Science and Technology, 2012, 14(9): 799-801. DOI: 10.1088/1009-0630/14/9/05
    [9]FEI Xiaomeng(费小猛), Shin-ichi KURODA, Yuki KONDO, Tamio MORI, Katsuhiko HOSOI. Influence of Additive Gas on Electrical and Optical Characteristics of Non- equilibrium Atmospheric Pressure Argon Plasma Jet[J]. Plasma Science and Technology, 2011, 13(5): 575-582.
    [10]QIAN Muyang(钱沐杨), REN Chunsheng(任春生), WANG Dezhen(王德真), FENG Yan(冯岩), ZHANG Jialiang(张家良). Atmospheric Pressure Cold Argon/Oxygen Plasma Jet Assisted by Preionization of Syringe Needle Electrode[J]. Plasma Science and Technology, 2010, 12(5): 561-565.
  • Cited by

    Periodical cited type(13)

    1. Tariq, U., Shukrullah, S., Khan, Y. et al. Analysis of an open-air argon plasma driven photo-Fenton reaction for degradation of synthetic dyes: Optical emission spectroscopy and statistical design optimization. AIP Advances, 2024, 14(11): 115319. DOI:10.1063/5.0241986
    2. Reema, Kakati, N., Radhakrishnanand, P., Sankaranarayanan, K. Insights on cold atmospheric plasma treatment of ethidium bromide and its binding to protein BSA. Physica Scripta, 2024, 99(9): 095609. DOI:10.1088/1402-4896/ad6bfa
    3. Warne, G.R., Lim, M., Lamichhane, P. et al. Esterification and volatile compound manipulation using radiofrequency cold plasma. Innovative Food Science and Emerging Technologies, 2024. DOI:10.1016/j.ifset.2024.103726
    4. Warne, G.R., Lim, M., Wilkinson, K. et al. Radiofrequency cold plasma – A novel tool for flavour modification in fresh and freeze-dried strawberries. Innovative Food Science and Emerging Technologies, 2023. DOI:10.1016/j.ifset.2023.103497
    5. Zhang, X., Ma, X., Li, M. et al. Enhanced antibacterial activity of cotton via silver nanocapsules deposited by atmospheric pressure plasma jet. Plasma Science and Technology, 2023, 25(3): 035503. DOI:10.1088/2058-6272/ac92d2
    6. Allabakshi, S.M., Srikar, P.S.N.S.R., Gangwar, R.K. et al. Feasibility of surface dielectric barrier discharge in wastewater treatment: Spectroscopic modeling, diagnostic, and dye mineralization. Separation and Purification Technology, 2022. DOI:10.1016/j.seppur.2022.121344
    7. Raji, A., Vasu, D., Navaneetha Pandiyaraj, K. et al. Degradation and Detoxification of Remazol Blue Contaminants as a Model Textile Effluent via Advanced Nonthermal Plasma Oxidation Processes. IEEE Transactions on Plasma Science, 2022, 50(6): 1407-1415. DOI:10.1109/TPS.2022.3147544
    8. Raji, A., Vasu, D., Pandiyaraj, K.N. et al. Combinatorial effects of non-thermal plasma oxidation processes and photocatalytic activity on the inactivation of bacteria and degradation of toxic compounds in wastewater. RSC Advances, 2022, 12(22): 14246-14259. DOI:10.1039/d1ra09337a
    9. Li, Y., Li, Z., Liu, Z. et al. Degradation of aniline in water with gaseous streamer corona plasma. Royal Society Open Science, 2021, 8(4): 202314. DOI:10.1098/rsos.202314
    10. Pandiyaraj, K.N., Vasu, D., Ghobeira, R. et al. Dye wastewater degradation by the synergetic effect of an atmospheric pressure plasma treatment and the photocatalytic activity of plasma-functionalized Cu‒TiO2 nanoparticles. Journal of Hazardous Materials, 2021. DOI:10.1016/j.jhazmat.2020.124264
    11. Navaneetha Pandiyaraj, K., Vasu, D., Ramkumar, M.C. et al. Improved degradation of textile effluents via the synergetic effects of Cu-CeO2 catalysis and non-thermal atmospheric pressure plasma treatment. Separation and Purification Technology, 2021. DOI:10.1016/j.seppur.2020.118037
    12. Mendez, J.A.C., Vong, Y.M., Escobedo, V.N.M. et al. A review on atmospheric pressure plasma jet and electrochemical evaluation of corrosion. Green Materials, 2021, 10(1): 11-22. DOI:10.1680/jgrma.20.00060
    13. Zhao, Y.-M., Patange, A., Sun, D.-W. et al. Plasma-activated water: Physicochemical properties, microbial inactivation mechanisms, factors influencing antimicrobial effectiveness, and applications in the food industry. Comprehensive Reviews in Food Science and Food Safety, 2020, 19(6): 3951-3979. DOI:10.1111/1541-4337.12644

    Other cited types(0)

Catalog

    Article views (130) PDF downloads (82) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return