Advanced Search+
Xiangmei LIU (刘相梅), Ningning ZU (祖宁宁), Hongying LI (李洪影), Jingyao LI (李景尧). Mode transition induced by gas pressure in dusty acetylene microdischarges: two-dimensional simulation[J]. Plasma Science and Technology, 2020, 22(4): 45402-045402. DOI: 10.1088/2058-6272/ab571f
Citation: Xiangmei LIU (刘相梅), Ningning ZU (祖宁宁), Hongying LI (李洪影), Jingyao LI (李景尧). Mode transition induced by gas pressure in dusty acetylene microdischarges: two-dimensional simulation[J]. Plasma Science and Technology, 2020, 22(4): 45402-045402. DOI: 10.1088/2058-6272/ab571f

Mode transition induced by gas pressure in dusty acetylene microdischarges: two-dimensional simulation

Funds: This work was supported by National Natural Science Foundation of China (Nos. 11805107 and 21703112) and the Fundamental Research Funds in Heilongjiang Provincial Universities of China (No. 135209312).
More Information
  • Received Date: July 29, 2019
  • Revised Date: November 10, 2019
  • Accepted Date: November 12, 2019
  • Radio-frequency microdischarge in acetylene is investigated by use of a fluid model and an aerosol dynamics model in a cylindrical discharge chamber. In this article, the results at a pressure of 100–500 Torr, a voltage of 80–150 V, and an electrode gap of 400–1000 μm are carefully analyzed and discussed. It is shown that two electron heating modes α and γ appear in the microdischarge, and the pressure-dependent transition from α to γ was accompanied by the abrupt decrease of electron density and electron temperature. The mode transition phenomenon is further confirmed by the variation of the electron temperature axial profiles, the profiles vary continuously from a center high at the pressure of 100 Torr to an edge high at the pressure of 500 Torr. Furthermore, in the α mode (100 Torr) the plasma density increases linearly with the increase of electrode gap, but decreases sharply with the increase of electrode gap in the γ mode (>100 Torr). The gas pressure and applied voltage effects on the nanoparticle density and degree of nonuniformity are also investigated. It has been shown that the gas pressure greatly influences the axial profiles of nanoparticle density and the values of the degree of nonuniformity, while the values of the plasma parameters (electron density and nanoparticle density) strongly depend on the applied voltage.
  • [1]
    Mariotti D and Sankaran R M 2010 J. Phys. D: Appl. Phys. 43323001
    [2]
    Benedikt J et al 2007 Plasma Phys. Control. Fusion 49 B419
    [3]
    Raballand V et al 2009 J. Appl. Phys. 105 083304
    [4]
    Reuter R et al 2011 Appl. Phys. Lett. 98 111502
    [5]
    Benedikt J et al 2006 Appl. Phys. Lett. 89 251504
    [6]
    Robertson J 2002 Mater. Sci. Eng., R 37 129
    [7]
    Vladimirov S V and Ostrikov K 2004 Phys. Rep. 393 175
    [8]
    Daniels B K, Brown D W and Kimock F M 1997 J. Mater.Res. 12 2485
    [9]
    De Bleecker K, Bogaerts A and Goedheer W 2006 New J.Phys. 8 178
    [10]
    De Bleecker K, Bogaerts A and Goedheer W 2006 Phys. Rev.E 73 026405
    [11]
    De Bleecker K, Bogaerts A and Goedheer W 2006 Appl. Phys.Lett. 88 151501
    [12]
    Benedikt J et al 2007 J. Phys. Chem. A 111 10453
    [13]
    Deschenaux C et al 1999 J. Phys. D: Appl. Phys. 32 1876
    [14]
    Mao M et al 2008 J. Phys. D: Appl. Phys. 41 225201
    [15]
    Hammond E P et al 2002 J. Comput. Phys. 176 402
    [16]
    Liu X M, Li Q N and Li R 2015 Chin. Phys. B 24 075204
    [17]
    Boris J P and Book D L 1973 J. Comput. Phys. 11 38
    [18]
    Passchier J D P and Goedheer W J 1993 J. Appl. Phys. 74 3744
    [19]
    Kortshagen U and Bhandarkar U 1999 Phys. Rev. E 60 887
    [20]
    Zhang Y et al 2014 J. Appl. Phys. 115 193301
    [21]
    Raizer Y P and Shneider M N 1991 Sov. J. Plasma Phys.17 789
    [22]
    Raizer Y P and Shneider M N 1992 Sov. J. Plasma Phys.18 762
    [23]
    Godyak V A, Piejak R B and Alexandrovich B M 1992 Phys.Rev. Lett. 68 40
    [24]
    Sung D et al 2009 J. Appl. Phys. 106 023303
  • Related Articles

    [1]Xueren HONG (洪学仁), Desheng ZHANG (张德生), Jiming GAO (高吉明), Rongan TANG (唐荣安), Peng GUO (郭鹏), Jukui XUE (薛具奎). The propagation dynamics and stability of an intense laser beam in a radial power-law plasma channel[J]. Plasma Science and Technology, 2021, 23(12): 125002. DOI: 10.1088/2058-6272/ac2ecf
    [2]Yaorong YANG (杨耀荣), Yawei HOU (候雅巍), Wei CHEN (陈伟), Ping ZHU (朱平), Xianqu WANG (王先驱), Zhihui ZOU (邹志慧), Yi YU (余羿), Min XU (许敏), Minyou YE (叶民友). Investigation of ion fishbone stability on HL-2A using NIMROD[J]. Plasma Science and Technology, 2019, 21(8): 85101-085101. DOI: 10.1088/2058-6272/ab1295
    [3]S PUROHIT, Y SUZUKI, S OHDACHI, S YAMAMOTO. Soft x-ray tomographic reconstruction of Heliotron J plasma for the study of magnetohydrodynamic equilibrium and stability[J]. Plasma Science and Technology, 2019, 21(6): 65102-065102. DOI: 10.1088/2058-6272/ab0846
    [4]ZHANG Xiujie (张秀杰), PAN Chuanjie (潘传杰), XU Zengyu (许增裕). MHD Stability Analysis and Flow Controls of Liquid Metal Free Surface Film Flows as Fusion Reactor PFCs[J]. Plasma Science and Technology, 2016, 18(12): 1204-1214. DOI: 10.1088/1009-0630/18/12/11
    [5]P. K. KARMAKAR, B. BORAH. Inertia-Centric Stability Analysis of a Planar Uniform Dust Molecular Cloud with Weak Neutral-Charged Dust Frictional Coupling[J]. Plasma Science and Technology, 2014, 16(5): 433-447. DOI: 10.1088/1009-0630/16/5/01
    [6]LI Weixin (李炜昕), YUAN Zhensheng (袁振圣), WU Wenjing (武文晶), CHEN Zhenmao (陈振茂). Numerical Analysis on the Magneto-Elastic Stability of Current -Carrying Conductors: Aiming at Applications for the Tokamak System[J]. Plasma Science and Technology, 2013, 15(2): 175-178. DOI: 10.1088/1009-0630/15/2/20
    [7]CHEN Junjie (陈均杰), LI Guoqiang (李国强), QIAN Jinping (钱金平), LIU Zixi (刘子奚). Ideal MHD Stability Prediction and Required Power for EAST Advanced Scenario[J]. Plasma Science and Technology, 2012, 14(11): 947-952. DOI: 10.1088/1009-0630/14/11/01
    [8]CHEN Shuangtao (陈双涛), ZHAO Hongli (赵红利), MA Bin (马斌), HOU Yu (侯予). Calculation of the Critical Speed and Stability Analysis of Cryogenic Turboexpanders with Different Structures[J]. Plasma Science and Technology, 2012, 14(10): 919-926. DOI: 10.1088/1009-0630/14/10/12
    [9]LIU bo (刘波), YANG JiJun (杨吉军), JIAO Guohua (焦国华), XU KeWei (徐可为). Improvement of Interfacial Adhesion Strength and Thermal Stability of Cu/p-SiC:H/SiOC:H Film Stack by Plasma Treatment on the Surface of Cu Film[J]. Plasma Science and Technology, 2012, 14(7): 619-623. DOI: 10.1088/1009-0630/14/7/12
    [10]George SAMUEL, Devi E SAVITHRI, Venugopal CHANDU. Kinetic Alfven Waves Excited by Cometary Newborn Ions with Large Perpendicular Energies[J]. Plasma Science and Technology, 2011, 13(2): 135-139.

Catalog

    Article views (93) PDF downloads (53) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return