Advanced Search+
Kristel GHOOS, Heinke FRERICHS, Wouter DEKEYSER, Giovanni SAMAEY, Martine BAELMANS. Numerical accuracy and convergence with EMC3-EIRENE[J]. Plasma Science and Technology, 2020, 22(5): 54001-054001. DOI: 10.1088/2058-6272/ab5866
Citation: Kristel GHOOS, Heinke FRERICHS, Wouter DEKEYSER, Giovanni SAMAEY, Martine BAELMANS. Numerical accuracy and convergence with EMC3-EIRENE[J]. Plasma Science and Technology, 2020, 22(5): 54001-054001. DOI: 10.1088/2058-6272/ab5866

Numerical accuracy and convergence with EMC3-EIRENE

Funds: The work of K Ghoos was sponsored by Flanders Innovation and Entrepreneurship (IWT.141064) and a travel grant (V4.128.18N) from Research Foundation—Flanders (FWO). Parts of the work are supported by the Research Foundation Flanders (FWO) under project grant G078316N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation—Flanders (FWO) and the Flemish Government—department EWI.
More Information
  • Received Date: July 21, 2019
  • Revised Date: November 13, 2019
  • Accepted Date: November 17, 2019
  • The iterative Monte Carlo (MC) code EMC3-EIRENE is frequently used for plasma edge simulations in 3D applications. So far, a quantitative evaluation of the numerical quality of the code results remains an open issue. In this paper, we demonstrate a framework for the practical assessment of accuracy and convergence with EMC3-EIRENE. Moreover, we provide a first accuracy analysis with EMC3-EIRENE for a DIII-D divertor edge plasma case. First, we introduce post-processing averaging to efficiently reduce the variance of the statistical error. Then, we estimate the deterministic error contributions based on their theoretical reduction rates by comparing solutions with a different grid resolution, time step, or number of MC particles per iteration. Finally, using parameterized expressions for the error and the computational time, suitable numerical parameters are determined to achieve faster and/or more accurate results. We found that simulations can be more than twice as fast without losing accuracy by making use of post-processing averaging and choosing optimal parameters. In addition, we conclude that the discretization error is the dominant error contribution for the case selected in this paper, which demonstrates the importance of constructing an adequate mesh.
  • [1]
    Feng Y et al 2004 Contr. Plasmas Phys. 44 57
    [2]
    Reiter D et al 2005 Fusion Sci. Technol. 47 172
    [3]
    Feng Y et al 2014 Contr. Plasmas Phys. 54 426
    [4]
    Schmitz O et al 2016 Nucl. Fusion 56 066008
    [5]
    Feng Y et al 1999 J. Nucl. Mater. 266–269 812
    [6]
    Van Kampen N G 1981 Stochastic Processes in Physics and Chemistry (Amsterdam: North-Holland)
    [7]
    Kobayash M et al 2004 Contr. Plasmas Phys. 44 25
    [8]
    Ghoos K et al 2018 Contr. Plasmas Phys. 58 652
    [9]
    Ghoos K et al 2019 Nucl. Fusion 59 026001
    [10]
    Baelmans M et al 2016 Nucl. Mater. Energy 12 858
    [11]
    Brown F B 2009 A review of Monte Carlo criticality calculations—convergence, bias, statistics Int. Conf. on Mathematics, Computational Methods and Reactor Physics (New York: American Nuclear Society)
    [12]
    Newman M E J et al 1999 Monte Carlo Methods in Statistical Physics (Oxford: Oxford University Press)
    [13]
    Xu J et al 1999 J. Comput. Phys. 152 192
    [14]
    Marandet Y et al 2016 Contr. Plasmas Phys. 56 60
    [15]
    Ghoos K et al 2017 Numerical error estimation in Random Noise coupled plasma edge simulations in nuclear fusion reactors Proc. Int. Conf. on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (Korea) (Daejeon: Korean Nuclear Society)
    [16]
    Ghoos K 2019 Accuracy-based simulation strategies for plasma edge simulations for nuclear fusion devices PhD Thesis KU Leuven
    [17]
    Roache P J 1994 J. Fluids Eng. 116 405
    [18]
    Ghoos K et al 2016 J. Comput. Phys. 322 162
    [19]
    Dekeyser W et al 2018 Contr. Plasma Phys. 58 643
  • Related Articles

    [1]Pan LU, Dong-Wook KIM, Dong-Wha PARK. Simple reactor for the synthesis of silver nanoparticles with the assistance of ethanol by gas–liquid discharge plasma[J]. Plasma Science and Technology, 2019, 21(4): 44005-044005. DOI: 10.1088/2058-6272/aaeada
    [2]Shuheng HU (胡淑恒), Xinghao LIU (刘行浩), Zimu XU (许子牧), Jiaquan WANG (汪家权), Yunxia LI (李云霞), Jie SHEN (沈洁), Yan LAN (兰彦), Cheng CHENG (程诚). Degradation and mineralization of ciprofloxacin by gas–liquid discharge non-thermal plasma[J]. Plasma Science and Technology, 2019, 21(1): 15501-015501. DOI: 10.1088/2058-6272/aade82
    [3]Linbo GU (顾林波), Yixi CAI (蔡忆昔), Yunxi SHI (施蕴曦), Jing WANG (王静), Xiaoyu PU (濮晓宇), Jing TIAN (田晶), Runlin FAN (樊润林). Effect of indirect non-thermal plasma on particle size distribution and composition of diesel engine particles[J]. Plasma Science and Technology, 2017, 19(11): 115503. DOI: 10.1088/2058-6272/aa7f6e
    [4]ZHANG Liping (张丽萍). The Instability of Terahertz Plasma Waves in Two Dimensional Gated and Ungated Quantum Electron Gas[J]. Plasma Science and Technology, 2016, 18(4): 360-363. DOI: 10.1088/1009-0630/18/4/05
    [5]XIN Qing (辛青), ZHANG Yi (张轶), WU Kaibin (巫开斌). Degradation of Microcystin-LR by Gas-Liquid Interfacial Discharge Plasma[J]. Plasma Science and Technology, 2013, 15(12): 1221-1225. DOI: 10.1088/1009-0630/15/12/11
    [6]ZHU Daoyun (朱道云), ZHENG Changxi (郑昌喜), CHEN Dihu (陈弟虎), HE Zhenhui (何振辉). Plasma-Neutral Gas Structure in a Magnesium Cathodic Arc Operating at Oxygen Gas with Experimental Comparison[J]. Plasma Science and Technology, 2013, 15(11): 1116-1121. DOI: 10.1088/1009-0630/15/11/08
    [7]M. M. MORSHED, S. M. DANIELS. Electron Density and Optical Emission Measurements of SF6/O2 Plasmas for Silicon Etch Processes[J]. Plasma Science and Technology, 2012, 14(4): 316-320. DOI: 10.1088/1009-0630/14/4/09
    [8]LI Fuliang (李付亮), WANG Feng(汪沨), WANG Guoli(王国利), W. PFEIFFER, He Rongtao(何荣涛). Study of Formation and Propagation of Streamers in SF6 and Its Gas Mixtures with Low Content of SF6 Using a One-Dimensional Fluid Model[J]. Plasma Science and Technology, 2012, 14(3): 187-191. DOI: 10.1088/1009-0630/14/3/02
    [9]D. S. RAWAL, B. K. SEHGAL, R. MURALIDHARAN, H. K. MALIK. Experimental Study of the Influence of Process Pressure and Gas Composition on GaAs Etching Characteristics in Cl2/BCl3-Based Inductively Coupled Plasma[J]. Plasma Science and Technology, 2011, 13(2): 223-229.
    [10]A. RAHMATI, H. BIDADI, K. AHMADI, F. HADIAN. Reactive DC Magnetron Sputter Deposited Titanium-Copper-Nitrogen Nano-Composite Thin Films with an Argon/Nitrogen Gas Mixture[J]. Plasma Science and Technology, 2010, 12(6): 681-687.
  • Cited by

    Periodical cited type(13)

    1. Tariq, U., Shukrullah, S., Khan, Y. et al. Analysis of an open-air argon plasma driven photo-Fenton reaction for degradation of synthetic dyes: Optical emission spectroscopy and statistical design optimization. AIP Advances, 2024, 14(11): 115319. DOI:10.1063/5.0241986
    2. Reema, Kakati, N., Radhakrishnanand, P., Sankaranarayanan, K. Insights on cold atmospheric plasma treatment of ethidium bromide and its binding to protein BSA. Physica Scripta, 2024, 99(9): 095609. DOI:10.1088/1402-4896/ad6bfa
    3. Warne, G.R., Lim, M., Lamichhane, P. et al. Esterification and volatile compound manipulation using radiofrequency cold plasma. Innovative Food Science and Emerging Technologies, 2024. DOI:10.1016/j.ifset.2024.103726
    4. Warne, G.R., Lim, M., Wilkinson, K. et al. Radiofrequency cold plasma – A novel tool for flavour modification in fresh and freeze-dried strawberries. Innovative Food Science and Emerging Technologies, 2023. DOI:10.1016/j.ifset.2023.103497
    5. Zhang, X., Ma, X., Li, M. et al. Enhanced antibacterial activity of cotton via silver nanocapsules deposited by atmospheric pressure plasma jet. Plasma Science and Technology, 2023, 25(3): 035503. DOI:10.1088/2058-6272/ac92d2
    6. Allabakshi, S.M., Srikar, P.S.N.S.R., Gangwar, R.K. et al. Feasibility of surface dielectric barrier discharge in wastewater treatment: Spectroscopic modeling, diagnostic, and dye mineralization. Separation and Purification Technology, 2022. DOI:10.1016/j.seppur.2022.121344
    7. Raji, A., Vasu, D., Navaneetha Pandiyaraj, K. et al. Degradation and Detoxification of Remazol Blue Contaminants as a Model Textile Effluent via Advanced Nonthermal Plasma Oxidation Processes. IEEE Transactions on Plasma Science, 2022, 50(6): 1407-1415. DOI:10.1109/TPS.2022.3147544
    8. Raji, A., Vasu, D., Pandiyaraj, K.N. et al. Combinatorial effects of non-thermal plasma oxidation processes and photocatalytic activity on the inactivation of bacteria and degradation of toxic compounds in wastewater. RSC Advances, 2022, 12(22): 14246-14259. DOI:10.1039/d1ra09337a
    9. Li, Y., Li, Z., Liu, Z. et al. Degradation of aniline in water with gaseous streamer corona plasma. Royal Society Open Science, 2021, 8(4): 202314. DOI:10.1098/rsos.202314
    10. Pandiyaraj, K.N., Vasu, D., Ghobeira, R. et al. Dye wastewater degradation by the synergetic effect of an atmospheric pressure plasma treatment and the photocatalytic activity of plasma-functionalized Cu‒TiO2 nanoparticles. Journal of Hazardous Materials, 2021. DOI:10.1016/j.jhazmat.2020.124264
    11. Navaneetha Pandiyaraj, K., Vasu, D., Ramkumar, M.C. et al. Improved degradation of textile effluents via the synergetic effects of Cu-CeO2 catalysis and non-thermal atmospheric pressure plasma treatment. Separation and Purification Technology, 2021. DOI:10.1016/j.seppur.2020.118037
    12. Mendez, J.A.C., Vong, Y.M., Escobedo, V.N.M. et al. A review on atmospheric pressure plasma jet and electrochemical evaluation of corrosion. Green Materials, 2021, 10(1): 11-22. DOI:10.1680/jgrma.20.00060
    13. Zhao, Y.-M., Patange, A., Sun, D.-W. et al. Plasma-activated water: Physicochemical properties, microbial inactivation mechanisms, factors influencing antimicrobial effectiveness, and applications in the food industry. Comprehensive Reviews in Food Science and Food Safety, 2020, 19(6): 3951-3979. DOI:10.1111/1541-4337.12644

    Other cited types(0)

Catalog

    Article views (193) PDF downloads (89) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return