Advanced Search+
Kristel GHOOS, Heinke FRERICHS, Wouter DEKEYSER, Giovanni SAMAEY, Martine BAELMANS. Numerical accuracy and convergence with EMC3-EIRENE[J]. Plasma Science and Technology, 2020, 22(5): 54001-054001. DOI: 10.1088/2058-6272/ab5866
Citation: Kristel GHOOS, Heinke FRERICHS, Wouter DEKEYSER, Giovanni SAMAEY, Martine BAELMANS. Numerical accuracy and convergence with EMC3-EIRENE[J]. Plasma Science and Technology, 2020, 22(5): 54001-054001. DOI: 10.1088/2058-6272/ab5866

Numerical accuracy and convergence with EMC3-EIRENE

Funds: The work of K Ghoos was sponsored by Flanders Innovation and Entrepreneurship (IWT.141064) and a travel grant (V4.128.18N) from Research Foundation—Flanders (FWO). Parts of the work are supported by the Research Foundation Flanders (FWO) under project grant G078316N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation—Flanders (FWO) and the Flemish Government—department EWI.
More Information
  • Received Date: July 21, 2019
  • Revised Date: November 13, 2019
  • Accepted Date: November 17, 2019
  • The iterative Monte Carlo (MC) code EMC3-EIRENE is frequently used for plasma edge simulations in 3D applications. So far, a quantitative evaluation of the numerical quality of the code results remains an open issue. In this paper, we demonstrate a framework for the practical assessment of accuracy and convergence with EMC3-EIRENE. Moreover, we provide a first accuracy analysis with EMC3-EIRENE for a DIII-D divertor edge plasma case. First, we introduce post-processing averaging to efficiently reduce the variance of the statistical error. Then, we estimate the deterministic error contributions based on their theoretical reduction rates by comparing solutions with a different grid resolution, time step, or number of MC particles per iteration. Finally, using parameterized expressions for the error and the computational time, suitable numerical parameters are determined to achieve faster and/or more accurate results. We found that simulations can be more than twice as fast without losing accuracy by making use of post-processing averaging and choosing optimal parameters. In addition, we conclude that the discretization error is the dominant error contribution for the case selected in this paper, which demonstrates the importance of constructing an adequate mesh.
  • [1]
    Feng Y et al 2004 Contr. Plasmas Phys. 44 57
    [2]
    Reiter D et al 2005 Fusion Sci. Technol. 47 172
    [3]
    Feng Y et al 2014 Contr. Plasmas Phys. 54 426
    [4]
    Schmitz O et al 2016 Nucl. Fusion 56 066008
    [5]
    Feng Y et al 1999 J. Nucl. Mater. 266–269 812
    [6]
    Van Kampen N G 1981 Stochastic Processes in Physics and Chemistry (Amsterdam: North-Holland)
    [7]
    Kobayash M et al 2004 Contr. Plasmas Phys. 44 25
    [8]
    Ghoos K et al 2018 Contr. Plasmas Phys. 58 652
    [9]
    Ghoos K et al 2019 Nucl. Fusion 59 026001
    [10]
    Baelmans M et al 2016 Nucl. Mater. Energy 12 858
    [11]
    Brown F B 2009 A review of Monte Carlo criticality calculations—convergence, bias, statistics Int. Conf. on Mathematics, Computational Methods and Reactor Physics (New York: American Nuclear Society)
    [12]
    Newman M E J et al 1999 Monte Carlo Methods in Statistical Physics (Oxford: Oxford University Press)
    [13]
    Xu J et al 1999 J. Comput. Phys. 152 192
    [14]
    Marandet Y et al 2016 Contr. Plasmas Phys. 56 60
    [15]
    Ghoos K et al 2017 Numerical error estimation in Random Noise coupled plasma edge simulations in nuclear fusion reactors Proc. Int. Conf. on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (Korea) (Daejeon: Korean Nuclear Society)
    [16]
    Ghoos K 2019 Accuracy-based simulation strategies for plasma edge simulations for nuclear fusion devices PhD Thesis KU Leuven
    [17]
    Roache P J 1994 J. Fluids Eng. 116 405
    [18]
    Ghoos K et al 2016 J. Comput. Phys. 322 162
    [19]
    Dekeyser W et al 2018 Contr. Plasma Phys. 58 643
  • Related Articles

    [1]Hao WANG (王灏), Yunfeng LIANG (梁云峰), Shuai XU (徐帅), Zhonghe JIANG (江中和), Yuhe FENG (冯玉和), A KNIEPS, P DREWS, Jie YANG (阳杰), Xin XU (徐鑫), Ting LONG (龙婷). Influence of the X-point location on edge plasma transport in the J-TEXT tokamak with a high-field-side single-null divertor[J]. Plasma Science and Technology, 2021, 23(12): 125103. DOI: 10.1088/2058-6272/ac224a
    [2]J COSFELD, P DREWS, B BLACKWELL, M JAKUBOWSKI, H NIEMANN, D ZHANG, Y FENG, the Wendelstein -X Team. Numerical estimate of multi-species ion sound speed of Langmuir probe interpretations in the edge plasmas of Wendelstein 7-X[J]. Plasma Science and Technology, 2020, 22(8): 85102-085102. DOI: 10.1088/2058-6272/ab8974
    [3]J KO, T H KIM, S CHOI. Numerical analysis of thermal plasma scrubber for CF4 decomposition[J]. Plasma Science and Technology, 2019, 21(6): 64002-064002. DOI: 10.1088/2058-6272/aafbba
    [4]P DREWS, H NIEMANN, J COSFELD, Y GAO, J GEIGER, O GRULKE, M HENKEL, D HÖSCHEN, K HOLLFELD, C KILLER, AKRÄMER-FLECKEN, Y LIANG, S LIU, D NICOLAI, O NEUBAUER, M RACK, B SCHWEER, G SATHEESWARAN, L RUDISCHHAUSER, N SANDRI, N WANG, the W-X Team. Magnetic configuration effects on the edge heat flux in the limiter plasma on W7-X measured using the infrared camera and the combined probe[J]. Plasma Science and Technology, 2018, 20(5): 54003-054003. DOI: 10.1088/2058-6272/aaa968
    [5]Arif ULLAH, Majid KHAN, M KAMRAN, R KHAN, Zhengmao SHENG (盛正卯). Monte-Carlo simulation of a stochastic differential equation[J]. Plasma Science and Technology, 2017, 19(12): 125001. DOI: 10.1088/2058-6272/aa8f3f
    [6]Guozhong DENG (邓国忠), Xiaoju LIU (刘晓菊), Liang WANG (王亮), Shaocheng LIU (刘少承), Jichan XU (许吉禅), Wei FENG (冯威), Jianbin LIU (刘建斌), Huan LIU (刘欢), Xiang GAO (高翔). Modeling of divertor power footprint widths on EAST by SOLPS5.0/B2.5-Eirene[J]. Plasma Science and Technology, 2017, 19(4): 45101-045101. DOI: 10.1088/2058-6272/aa5802
    [7]ZANG Linge (臧临阁), M. TAKEUCHI, N. NISHINO, T. MIZUUCHI, S. OHSHIMA, K. KASAJIMA, M. SHA, K. MUKAI, et al. Observation of Edge Plasma Fluctuations with a Fast Camera in Heliotron J[J]. Plasma Science and Technology, 2013, 15(3): 213-216. DOI: 10.1088/1009-0630/15/3/04
    [8]WU Yongpeng(吴永鹏), TANG Bin(汤彬). Monte-Carlo Simulation of Response Functions for Natural Gamma-rays in LaBr3 Detector System with Complex Borehole Configurations[J]. Plasma Science and Technology, 2012, 14(6): 481-487. DOI: 10.1088/1009-0630/14/6/10
    [9]WANG Zhen (王振), WANG Ninghui (王宁会), LI Tie (李铁), CAO Yong (曹勇). 3D Numerical Analysis of the Arc Plasma Behavior in a Submerged DC Electric Arc Furnace for the Production of Fused MgO[J]. Plasma Science and Technology, 2012, 14(4): 321-326. DOI: 10.1088/1009-0630/14/4/10
    [10]ZHANG Ling, XU Guosheng, DING Siye, GAO Wei, WU Zhenwei, CHEN Yingjie, HUANG Juan. Estimation of Neutral Density in Edge Plasma with Double Null Configuration in EAST[J]. Plasma Science and Technology, 2011, 13(4): 431-434.

Catalog

    Article views (193) PDF downloads (89) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return