Advanced Search+
Keyao HUANG (黄珂瑶), Hao SUN (孙昊), Chunping NIU (纽春萍), Yi WU (吴翊), Mingzhe RONG (荣命哲), Guangchao YAN (闫广超), Guangmin HUANG (黄广明). Simulation of arcs for DC relay considering different impacts[J]. Plasma Science and Technology, 2020, 22(2): 24003-024003. DOI: 10.1088/2058-6272/ab5ba2
Citation: Keyao HUANG (黄珂瑶), Hao SUN (孙昊), Chunping NIU (纽春萍), Yi WU (吴翊), Mingzhe RONG (荣命哲), Guangchao YAN (闫广超), Guangmin HUANG (黄广明). Simulation of arcs for DC relay considering different impacts[J]. Plasma Science and Technology, 2020, 22(2): 24003-024003. DOI: 10.1088/2058-6272/ab5ba2

Simulation of arcs for DC relay considering different impacts

Funds: This work was supported by National Natural Science Foundation of China (Nos. 51707144, 51877165 and 51577144) and Shaanxi Province Key R&D Program under 2019ZDLGY18-05. This manuscript is recommended by international symposium on insulation and discharge computation for power equipment IDCOMPU2019.
More Information
  • Received Date: August 17, 2019
  • Revised Date: November 24, 2019
  • Accepted Date: November 25, 2019
  • Recently DC relay has been concerned as a key component in DC power distribution, management and control systems like aircraft, new energy vehicle, IT and communication industries. Ordinarily, magnetic force and contact moving speed have great influence on arc behaviours in the breaking process. This paper focuses on the numerical investigation of arc during the contact opening process in a real 400 V/20 A DC relay product coupling with an inductive load circuit. A 3D air arc model based on the magneto-hydrodynamic theory was built and calculated. A method coupling different computational software was used to take the nonlinear permanent magnet and contact opening process into consideration simultaneously. Arc behaviours under different magnetic field and contact opening speed were presented and discussed carefully. It has been found that the increase of the magnetic field is beneficial to the quick build-up of arc length and voltage. Arc breaking duration becomes shorter with the increase in contact opening speed from 63.5 rad s−1 to 94.5 rad s−1, such reduction is less significant with an increase of opening speed from 94.5 rad s−1 to 118.5 rad s−1.
  • [1]
    Lindmayer M 2016 IEEE Trans. Plasma Sci. 44 187
    [2]
    Ma R G et al 2013 IEEE Trans. Plasma Sci. 41 2551
    [3]
    Cui X L et al 2015 Experiment research on re-strike phenomenon occurring during high-voltage direct-current breaking process under transverse magnetic field Proc. 2015 IEEE 61st Holm Conf. on Electrical Contacts vol 2015 (Piscataway, NJ: IEEE) p 187
    [4]
    Zhou X, Cui X L and Zhai G F 2013 IEICE Trans. Electron.9 1124
    [5]
    Liang H M et al 2003 Research on the relationship between contact breakaway initial velocity and arc duration[relays] Proc. 49th IEEE Holm Conf. on Electrical Contacts (Piscataway, NJ: IEEE) 2003 (https://doi.org/10.1109/HOLM.2003.1246498)
    [6]
    Sallais D, Jemaa N B and Carvou E 2007 Minimization of arc extinction gap in the opening speed range 1 cm/s–1 m/s Proc. 53rd IEEE Holm Conf. on Electrical Contacts vol 2007 (Piscataway, NJ: IEEE) 239
    [7]
    Hasegawa M 2007 An experimental study of the minimum arc current of silver contacts with different opening speeds Proc.53rd IEEE Holm Conf. on Electrical Contacts vol 2007 (Piscataway, NJ: IEEE) 294
    [8]
    Ma Q et al 2008 Plasma Sci. Technol. 10 313
    [9]
    Gleizes A, Gonzalez J J and Freton P 2005 J. Physics D Appl.Phys. 38 R153
    [10]
    Karetta F and Lindmayer M 1998 IEEE Trans. Compon.Packag. Manuf. Technol. A 21 96
    [11]
    Zhang J L et al 2002 IEEE Trans. Plasma Sci. 30 706
    [12]
    Yang F et al 2010 J. Phys. D Appl. Phys. 43 434011
    [13]
    Yang F et al 2012 Plasma Sci. Technol. 14 167
    [14]
    Rong M Z et al 2010 IEEE Trans. Plasma Sci. 38 2306
    [15]
    Wang C L et al 2016 Plasma Sci. Technol. 18 732
    [16]
    Wu Y et al 2017 J. Phys. D Appl. Phys. 50 47LT01
    [17]
    Schnick M et al 2010 J. Phys. D Appl. Phys. 43 434008
    [18]
    Murphy A B 2013 J. Phys. D Appl. Phys. 46 224004
    [19]
    Bo K et al 2015 Electr. Energy Manage. Technol. 2015 7 (in Chinese)
    [20]
    Hasegawa M, Sonobe H and Ohkawa N 2015 Influences of contact opening speeds in the range of 0.5 to 200 mm/s on break arc behaviors of AgSnO2 contacts in DC conditions Proc. 2015 IEEE 61st Holm Conf. on Electrical Contacts (Piscataway, NJ: IEEE) 2015
  • Related Articles

    [1]Chundong HU (胡纯栋), Yongjian XU (许永建), Yuanlai XIE (谢远来), Yahong XIE (谢亚红), Lizhen LIANG (梁立振), Caichao JIANG (蒋才超), Sheng LIU (刘胜), Jianglong WEI (韦江龙), Peng SHENG (盛鹏), Zhimin LIU (刘智民), Ling TAO (陶玲), the NBI Team. Thermal analysis of EAST neutral beam injectors for long-pulse beam operation[J]. Plasma Science and Technology, 2018, 20(4): 45602-045602. DOI: 10.1088/2058-6272/aaa4f0
    [2]WEI Zian (卫子安), MA Jinxiu (马锦秀), LI Yuanrui (李元瑞), SUN Yan (孙彦), JIANG Zhengqi (江正琦). Control of Beam Energy and Flux Ratio in an Ion-Beam-Background Plasma System Produced in a Double Plasma Device[J]. Plasma Science and Technology, 2016, 18(11): 1076-1080. DOI: 10.1088/1009-0630/18/11/04
    [3]WEI Jianglong (韦江龙), XIE Yahong (谢亚红), LIANG Lizhen (梁立振), GU Yuming (顾玉明), YI Wei (邑伟), LI Jun (李军), HU Chundong (胡纯栋), XIE Yuanlai (谢远来), JIANG Caichao (蒋才超), TAO Ling (陶玲), SHENG Peng (盛鹏), XU Yongjian (许永建). Design of the Prototype Negative Ion Source for Neutral Beam Injector at ASIPP[J]. Plasma Science and Technology, 2016, 18(9): 954-959. DOI: 10.1088/1009-0630/18/9/13
    [4]JIN Yizhou (金逸舟), YANG Juan (杨涓), TANG Mingjie (汤明杰), LUO Litao (罗立涛), FENG Bingbing (冯冰冰). Diagnosing the Fine Structure of Electron Energy Within the ECRIT Ion Source[J]. Plasma Science and Technology, 2016, 18(7): 744-750. DOI: 10.1088/1009-0630/18/7/08
    [5]HU Chundong (胡纯栋) for the NBI team. Preliminary Results of Ion Beam Extraction Tests on EAST Neutral Beam Injector[J]. Plasma Science and Technology, 2012, 14(10): 871-873. DOI: 10.1088/1009-0630/14/10/03
    [6]K. Ogawa, M. Isobe, K. Toi, F. Watanabe, D. A. Spong, A. Shimizu, M. Osakabe, D. S. Darrow, S. Ohdachi, S. Sakakibara, LHD Experiment Group. Magnetic Configuration Effects on Fast Ion Losses Induced by Fast Ion Driven Toroidal Alfvén Eigenmodes in the Large Helical Device[J]. Plasma Science and Technology, 2012, 14(4): 269-272. DOI: 10.1088/1009-0630/14/4/01
    [7]LI Jibo(李吉波), DING Siye(丁斯晔), WU Bin(吴斌), HU Chundong(胡纯栋). Simulations of Neutral Beam Ion Ripple Loss on EAST[J]. Plasma Science and Technology, 2012, 14(1): 78-82. DOI: 10.1088/1009-0630/14/1/17
    [8]LIU Xuelan (刘雪兰), XU An (许安), DAI Yin (戴银), YUAN Hang (袁航), YU Zengliang (余增亮). Surface Etching and DNA Damage Induced by Low-Energy Ion Irradiation in Yeast[J]. Plasma Science and Technology, 2011, 13(3): 381-384.
    [9]YANG Yao, GAO Xiang, the EAST team. Energy Confinement of both Ohmic and LHW Plasma on EAST[J]. Plasma Science and Technology, 2011, 13(3): 312-315.
    [10]Leila GHOLAMZADEH, Abbas GHASEMIZAD. Non-Uniformity of Heavy-Ion Beam Irradiation on a Direct-Driven Pellet in Inertial Confinement Fusion[J]. Plasma Science and Technology, 2011, 13(1): 44-49.
  • Cited by

    Periodical cited type(23)

    1. Gao, X., Deng, Y., Wei, Z. et al. Catalytic oxidation of volatile organic compounds by plasma–metal oxide coupling. Journal of Environmental Chemical Engineering, 2025, 13(2): 116045. DOI:10.1016/j.jece.2025.116045
    2. Qu, M., Zheng, Y., Cheng, Z. et al. Mechanism of chlorobenzene removal in biotrickling filter enhanced by non-thermal plasma: Insights from biodiversity and functional gene perspectives. Bioresource Technology, 2025. DOI:10.1016/j.biortech.2024.131931
    3. Zang, X., Sun, H., Wang, W. et al. Plasma-catalytic removal of toluene over bimetallic M/Mn-BTC catalysts in dielectric barrier discharge reactor. Separation and Purification Technology, 2024. DOI:10.1016/j.seppur.2023.125667
    4. Zhang, W., Xing, Y., Hao, L. et al. Effect of gas components on the degradation mechanism of o-dichlorobenzene by non-thermal plasma technology with single dielectric barrier discharge. Chemosphere, 2023. DOI:10.1016/j.chemosphere.2023.139866
    5. Zhang, L., Zou, Z., Lei, Z. et al. Research on the Mechanism of Synergistic Treatment of VOCs–O3 by Low Temperature Plasma Catalysis Technology. Plasma Chemistry and Plasma Processing, 2023, 43(6): 1651-1672. DOI:10.1007/s11090-023-10366-3
    6. Tao, Y., Xu, Y., Chang, K. et al. Dielectric barrier discharge plasma synthesis of Ag/γ-Al2O3 catalysts for catalytic oxidation of CO. Plasma Science and Technology, 2023, 25(8): 085504. DOI:10.1088/2058-6272/acc14c
    7. Shi, X., Liang, W., Yin, G. et al. Degradation of chlorobenzene by non-thermal plasma coupled with catalyst: influence of catalyst, interaction between plasma and catalyst. Plasma Science and Technology, 2023, 25(5): 055506. DOI:10.1088/2058-6272/acae56
    8. Huang, H., He, L., Wang, Y. et al. Experimental study on toluene removal by a two-stage plasma-biofilter system. Plasma Science and Technology, 2022, 24(12): 124011. DOI:10.1088/2058-6272/aca582
    9. Shi, X., Liang, W., Yin, G. et al. Effect of the factors on the mixture of toluene and chlorobenzene degradation by non-thermal plasma. Journal of Environmental Chemical Engineering, 2022, 10(6): 108927. DOI:10.1016/j.jece.2022.108927
    10. Shi, X., Liang, W., Yin, G. et al. Degradation of chlorobenzene by non-thermal plasma with Mn based catalyst | [低温等离子体协同 Mn 基催化剂降解氯苯研究]. Huagong Xuebao/CIESC Journal, 2022, 73(10): 4472-4483. DOI:10.11949/0438-1157.20220696
    11. Zhu, X., Xiong, H., Liu, J. et al. Plasma-enhanced catalytic oxidation of ethylene oxide over Fe–Mn based ternary catalysts. Journal of the Energy Institute, 2022. DOI:10.1016/j.joei.2022.06.002
    12. Zhu, X., Wu, X., Liu, J. et al. Soot Oxidation over γ-Al2O3-Supported Manganese-Based Binary Catalyst in a Dielectric Barrier Discharge Reactor. Catalysts, 2022, 12(7): 716. DOI:10.3390/catal12070716
    13. Yu, X., Dang, X., Li, S. et al. Abatement of chlorobenzene by plasma catalysis: Parameters optimization through response surface methodology (RSM), degradation mechanism and PCDD/Fs formation. Chemosphere, 2022. DOI:10.1016/j.chemosphere.2022.134274
    14. Gu, J., Shen, X., Liang, X. et al. Research on the removal of H2S using dielectric barrier discharge combined with photocatalysis and the fate of sulfur in the reaction. Chemical Engineering and Processing - Process Intensification, 2022. DOI:10.1016/j.cep.2022.108984
    15. Li, Y., Lv, J., Xu, Q. et al. Study of the Treatment of Organic Waste Gas Containing Benzene by a Low Temperature Plasma-Biological Degradation Method. Atmosphere, 2022, 13(4): 622. DOI:10.3390/atmos13040622
    16. Chang, T., Ma, C., Nikiforov, A. et al. Plasma degradation of trichloroethylene: Process optimization and reaction mechanism analysis. Journal of Physics D: Applied Physics, 2022, 55(12): 125202. DOI:10.1088/1361-6463/ac40bb
    17. Lin, Q., Peng, H., Xie, W. et al. Evaluation catalytic performance of Ag/TiO2 in dielectric barrier discharge plasma. Vacuum, 2022. DOI:10.1016/j.vacuum.2021.110844
    18. Xie, L., Lu, J., Ye, G. et al. Decomposition of gaseous chlorobenzene using a DBD combined CuO/α-Fe2O3 catalysis system. Environmental Technology (United Kingdom), 2022, 43(18): 2743-2754. DOI:10.1080/09593330.2021.1899292
    19. Li, S., Yu, X., Dang, X. et al. Non-thermal plasma coupled with MOx/γ-Al2O3 (M: Fe, Co, Mn, Ce) for chlorobenzene degradation: Analysis of byproducts and the reaction mechanism. Journal of Environmental Chemical Engineering, 2021, 9(6): 106562. DOI:10.1016/j.jece.2021.106562
    20. Jin, X., Wang, G., Lian, L. et al. Chlorobenzene removal using dbd coupled with cuo/γ-al2 o3 catalyst. Applied Sciences (Switzerland), 2021, 11(14): 6433. DOI:10.3390/app11146433
    21. Zhou, W., Ye, Z., Nikiforov, A. et al. The influence of relative humidity on double dielectric barrier discharge plasma for chlorobenzene removal. Journal of Cleaner Production, 2021. DOI:10.1016/j.jclepro.2020.125502
    22. Zhao, Y., Ye, K., Zhuang, Y. et al. Progress of manganese catalysts for non-thermal plasma catalysis on VOCs degradation. Huagong Jinzhan/Chemical Industry and Engineering Progress, 2020, 39(S2): 175-184. DOI:10.16085/j.issn.1000-6613.2020-1111
    23. Wang, R., Ren, J., Wu, J. et al. Characteristics and mechanism of toluene removal by double dielectric barrier discharge combined with an Fe2O3/TiO2/γ-Al2O3catalyst. RSC Advances, 2020, 10(68): 41511-41522. DOI:10.1039/d0ra07938c

    Other cited types(0)

Catalog

    Article views (191) PDF downloads (164) Cited by(23)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return