Advanced Search+
Yongfeng XU (徐永锋), Hongfei GUO (郭宏飞), Yuying WANG (王玉英), Zhihui FAN (樊智慧), Chunsheng REN (任春生). Effects of the transverse electric field on nanosecond pulsed dielectric barrier discharge in atmospheric airflow[J]. Plasma Science and Technology, 2020, 22(5): 55403-055403. DOI: 10.1088/2058-6272/ab6530
Citation: Yongfeng XU (徐永锋), Hongfei GUO (郭宏飞), Yuying WANG (王玉英), Zhihui FAN (樊智慧), Chunsheng REN (任春生). Effects of the transverse electric field on nanosecond pulsed dielectric barrier discharge in atmospheric airflow[J]. Plasma Science and Technology, 2020, 22(5): 55403-055403. DOI: 10.1088/2058-6272/ab6530

Effects of the transverse electric field on nanosecond pulsed dielectric barrier discharge in atmospheric airflow

Funds: This work is supported by National Natural Science Foundation of China (No. 51437002).
More Information
  • Received Date: July 24, 2019
  • Revised Date: December 18, 2019
  • Accepted Date: December 22, 2019
  • In this paper, an asymmetric electrode geometry (the misalignment between the ends of highvoltage and grounded electrodes) is proposed in order to investigate the effects of the transverse electric field on nanosecond pulsed dielectric barrier discharge (DBD). The results show that diffuse discharge manifests in the misaligned region and the micro-discharge channel in the aligned region moves directionally. Moreover, the diffuse discharge area increases with the decrease of the discharge gap and pulse repetition frequency, which is consistent with the variation of the moving velocity of the micro-discharge channel. When airflow is introduced into the discharge gap in the same direction as the transverse electric field, the dense filamentary discharge region at the airflow inlet of asymmetric electrode geometry is larger than that of symmetric electrode geometry. However, when the direction of the airflow is opposite to that of the transverse electric field, the dense filamentary discharge region of asymmetric electrode geometry is reduced. The above phenomena are mainly attributed to the redistribution of the space charges induced by the transverse electric field.
  • [1]
    Kogelschatz U 2003 Plasma Chem. Plasma Process 23 1
    [2]
    Ono R and Oda T 2007 J. Phys. D: Appl. Phys. 40 176
    [3]
    Ognier S et al 2009 Plasma Chem. Plasma Process. 29 261
    [4]
    Shao T et al 2017 IEEE Trans. Dielectr. Electr. Insul. 24 1557
    [5]
    Boeuf J P 2003 J. Phys. D: Appl. Phys. 36 R53
    [6]
    Jiang H et al 2011 IEEE Trans. Plasma Sci. 39 2076
    [7]
    Williamson J M et al 2006 J. Phys. D: Appl. Phys. 39 4400
    [8]
    Shao T et al 2008 J. Phys. D: Appl. Phys. 41 215203
    [9]
    Ito T et al 2010 J. Phys. D: Appl. Phys. 43 062001
    [10]
    Takaki K et al 2005 Appl. Phys. Lett. 86 151501
    [11]
    Palmer A J 1974 Appl. Phys. Lett. 25 138
    [12]
    Guo H F et al 2018 Phys. Plasmas 25 093505
    [13]
    Duan X X et al 2009 Phys. Rev. E 80 016202
    [14]
    Xu S W, Li L L and Ouyang J T 2015 Plasma Sci. Technol.17 384
    [15]
    Abolmasov S N, Shirafuji T and Tachibana K 2005 IEEE Trans. Plasma Sci. 33 941
    [16]
    Pavon S et al 2007 J. Phys. D: Appl. Phys. 40 1733
    [17]
    Chirokov A et al 2004 Plasma Sources Sci. Technol. 13 623
    [18]
    Okazaki S et al 1993 J. Phys. D: Appl. Phys. 26 889
    [19]
    Golubovskii Y B et al 2004 J. Phys. D: Appl. Phys. 37 1346
    [20]
    Wang X X et al 2006 Plasma Sources Sci. Technol. 15 845
    [21]
    Liu W Z et al 2017 EPL 118 45001
    [22]
    Stollenwerk L et al 2006 Phys. Rev. Lett. 96 255001
    [23]
    Ye Q Z et al 2013 Plasma Sci. Technol. 15 1112
    [24]
    Panousis E et al 2009 IEEE Trans. Plasma Sci. 37 1004
    [25]
    Liu Y D et al 2016 Phys. Plasmas 23 113508
    [26]
    Yu S et al 2016 Phys. Plasmas 23 023510
    [27]
    Lee H W et al 2010 Plasma Processes Polym. 7 274
    [28]
    Ohtsu Y and Nagamatsu K 2018 Jpn. J. Appl. Phys. 57 01AB01
    [29]
    Akishev Y et al 2011 Plasma Sources Sci. Technol. 20 024005
    [30]
    Kogelschatz U 2010 J. Phys.: Conf. Ser. 257 012015
    [31]
    Fridman A, Chirokov A and Gutsol A 2005 J. Phys. D: Appl.Phys. 38 R1
    [32]
    Eliasson B and Kogelschatz U 1991 IEEE Trans. Plasma Sci.19 309
    [33]
    Eliasson B, Hirth M and Kogelschatz U 1987 J. Phys. D: Appl.Phys. 20 1421
    [34]
    Kozlov K V et al 2001 J. Phys. D: Appl. Phys. 34 3164
    [35]
    Song H M et al 2016 Chin. Phys. B 25 035204
    [36]
    Wu Y et al 2010 Chin. J. Aeronaut. 23 39
    [37]
    Wu Y et al 2008 Appl. Phys. Lett. 93 031503
    [38]
    Liu Y D et al 2018 Phys. Plasmas 25 033519
    [39]
    Luo S Q, Denning M and Scharer J E 2008 J. Appl. Phys. 104 013301
    [40]
    Laux C O et al 2003 Plasma Sources Sci. Technol. 12 125
    [41]
    Yu L et al 2001 Plasma Chem. Plasma Process. 21 483
    [42]
    Tang J, Duan Y X and Zhao W 2010 Appl. Phys. Lett. 96 191503
    [43]
    Bayoda K D, Benard N and Moreau E 2015 J. Appl. Phys. 118 063301
    [44]
    Shao T et al 2006 J. Phys. D: Appl. Phys. 39 2192
    [45]
    Liu Y D et al 2017 Phys. Plasmas 24 113514
    [46]
    Moss R S, Eden J G and Kushner M J 2004 J. Phys. D: Appl.Phys. 37 2502
    [47]
    Qi H C et al 2016 Plasma Sci. Technol. 18 520
    [48]
    Huang X J et al 2011 Phys. Plasmas 18 033503
    [49]
    Fan Z H et al 2016 Phys. Plasmas 23 123520
    [50]
    Fan Z H et al 2019 IEEE Trans. Plasma Sci. 47 4312
  • Related Articles

    [1]Pan LU, Dong-Wook KIM, Dong-Wha PARK. Simple reactor for the synthesis of silver nanoparticles with the assistance of ethanol by gas–liquid discharge plasma[J]. Plasma Science and Technology, 2019, 21(4): 44005-044005. DOI: 10.1088/2058-6272/aaeada
    [2]Shuheng HU (胡淑恒), Xinghao LIU (刘行浩), Zimu XU (许子牧), Jiaquan WANG (汪家权), Yunxia LI (李云霞), Jie SHEN (沈洁), Yan LAN (兰彦), Cheng CHENG (程诚). Degradation and mineralization of ciprofloxacin by gas–liquid discharge non-thermal plasma[J]. Plasma Science and Technology, 2019, 21(1): 15501-015501. DOI: 10.1088/2058-6272/aade82
    [3]Linbo GU (顾林波), Yixi CAI (蔡忆昔), Yunxi SHI (施蕴曦), Jing WANG (王静), Xiaoyu PU (濮晓宇), Jing TIAN (田晶), Runlin FAN (樊润林). Effect of indirect non-thermal plasma on particle size distribution and composition of diesel engine particles[J]. Plasma Science and Technology, 2017, 19(11): 115503. DOI: 10.1088/2058-6272/aa7f6e
    [4]ZHANG Liping (张丽萍). The Instability of Terahertz Plasma Waves in Two Dimensional Gated and Ungated Quantum Electron Gas[J]. Plasma Science and Technology, 2016, 18(4): 360-363. DOI: 10.1088/1009-0630/18/4/05
    [5]XIN Qing (辛青), ZHANG Yi (张轶), WU Kaibin (巫开斌). Degradation of Microcystin-LR by Gas-Liquid Interfacial Discharge Plasma[J]. Plasma Science and Technology, 2013, 15(12): 1221-1225. DOI: 10.1088/1009-0630/15/12/11
    [6]ZHU Daoyun (朱道云), ZHENG Changxi (郑昌喜), CHEN Dihu (陈弟虎), HE Zhenhui (何振辉). Plasma-Neutral Gas Structure in a Magnesium Cathodic Arc Operating at Oxygen Gas with Experimental Comparison[J]. Plasma Science and Technology, 2013, 15(11): 1116-1121. DOI: 10.1088/1009-0630/15/11/08
    [7]M. M. MORSHED, S. M. DANIELS. Electron Density and Optical Emission Measurements of SF6/O2 Plasmas for Silicon Etch Processes[J]. Plasma Science and Technology, 2012, 14(4): 316-320. DOI: 10.1088/1009-0630/14/4/09
    [8]LI Fuliang (李付亮), WANG Feng(汪沨), WANG Guoli(王国利), W. PFEIFFER, He Rongtao(何荣涛). Study of Formation and Propagation of Streamers in SF6 and Its Gas Mixtures with Low Content of SF6 Using a One-Dimensional Fluid Model[J]. Plasma Science and Technology, 2012, 14(3): 187-191. DOI: 10.1088/1009-0630/14/3/02
    [9]D. S. RAWAL, B. K. SEHGAL, R. MURALIDHARAN, H. K. MALIK. Experimental Study of the Influence of Process Pressure and Gas Composition on GaAs Etching Characteristics in Cl2/BCl3-Based Inductively Coupled Plasma[J]. Plasma Science and Technology, 2011, 13(2): 223-229.
    [10]A. RAHMATI, H. BIDADI, K. AHMADI, F. HADIAN. Reactive DC Magnetron Sputter Deposited Titanium-Copper-Nitrogen Nano-Composite Thin Films with an Argon/Nitrogen Gas Mixture[J]. Plasma Science and Technology, 2010, 12(6): 681-687.
  • Cited by

    Periodical cited type(13)

    1. Tariq, U., Shukrullah, S., Khan, Y. et al. Analysis of an open-air argon plasma driven photo-Fenton reaction for degradation of synthetic dyes: Optical emission spectroscopy and statistical design optimization. AIP Advances, 2024, 14(11): 115319. DOI:10.1063/5.0241986
    2. Reema, Kakati, N., Radhakrishnanand, P., Sankaranarayanan, K. Insights on cold atmospheric plasma treatment of ethidium bromide and its binding to protein BSA. Physica Scripta, 2024, 99(9): 095609. DOI:10.1088/1402-4896/ad6bfa
    3. Warne, G.R., Lim, M., Lamichhane, P. et al. Esterification and volatile compound manipulation using radiofrequency cold plasma. Innovative Food Science and Emerging Technologies, 2024. DOI:10.1016/j.ifset.2024.103726
    4. Warne, G.R., Lim, M., Wilkinson, K. et al. Radiofrequency cold plasma – A novel tool for flavour modification in fresh and freeze-dried strawberries. Innovative Food Science and Emerging Technologies, 2023. DOI:10.1016/j.ifset.2023.103497
    5. Zhang, X., Ma, X., Li, M. et al. Enhanced antibacterial activity of cotton via silver nanocapsules deposited by atmospheric pressure plasma jet. Plasma Science and Technology, 2023, 25(3): 035503. DOI:10.1088/2058-6272/ac92d2
    6. Allabakshi, S.M., Srikar, P.S.N.S.R., Gangwar, R.K. et al. Feasibility of surface dielectric barrier discharge in wastewater treatment: Spectroscopic modeling, diagnostic, and dye mineralization. Separation and Purification Technology, 2022. DOI:10.1016/j.seppur.2022.121344
    7. Raji, A., Vasu, D., Navaneetha Pandiyaraj, K. et al. Degradation and Detoxification of Remazol Blue Contaminants as a Model Textile Effluent via Advanced Nonthermal Plasma Oxidation Processes. IEEE Transactions on Plasma Science, 2022, 50(6): 1407-1415. DOI:10.1109/TPS.2022.3147544
    8. Raji, A., Vasu, D., Pandiyaraj, K.N. et al. Combinatorial effects of non-thermal plasma oxidation processes and photocatalytic activity on the inactivation of bacteria and degradation of toxic compounds in wastewater. RSC Advances, 2022, 12(22): 14246-14259. DOI:10.1039/d1ra09337a
    9. Li, Y., Li, Z., Liu, Z. et al. Degradation of aniline in water with gaseous streamer corona plasma. Royal Society Open Science, 2021, 8(4): 202314. DOI:10.1098/rsos.202314
    10. Pandiyaraj, K.N., Vasu, D., Ghobeira, R. et al. Dye wastewater degradation by the synergetic effect of an atmospheric pressure plasma treatment and the photocatalytic activity of plasma-functionalized Cu‒TiO2 nanoparticles. Journal of Hazardous Materials, 2021. DOI:10.1016/j.jhazmat.2020.124264
    11. Navaneetha Pandiyaraj, K., Vasu, D., Ramkumar, M.C. et al. Improved degradation of textile effluents via the synergetic effects of Cu-CeO2 catalysis and non-thermal atmospheric pressure plasma treatment. Separation and Purification Technology, 2021. DOI:10.1016/j.seppur.2020.118037
    12. Mendez, J.A.C., Vong, Y.M., Escobedo, V.N.M. et al. A review on atmospheric pressure plasma jet and electrochemical evaluation of corrosion. Green Materials, 2021, 10(1): 11-22. DOI:10.1680/jgrma.20.00060
    13. Zhao, Y.-M., Patange, A., Sun, D.-W. et al. Plasma-activated water: Physicochemical properties, microbial inactivation mechanisms, factors influencing antimicrobial effectiveness, and applications in the food industry. Comprehensive Reviews in Food Science and Food Safety, 2020, 19(6): 3951-3979. DOI:10.1111/1541-4337.12644

    Other cited types(0)

Catalog

    Article views (179) PDF downloads (324) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return