Citation: | Yanfei CHEN (陈妍菲), Bowen FENG (冯博文), Qing ZHANG (张卿), Ruoyu WANG (王若愚), Kostya (Ken) OSTRIKOV (欧思聪), Xiaoxia ZHONG (钟晓霞). Temperature dependence of pattern transitions on water surface in contact with DC microplasmas[J]. Plasma Science and Technology, 2020, 22(5): 55404-055404. DOI: 10.1088/2058-6272/ab66e9 |
[1] |
Chiang W H et al 2019 Adv. Mater. (https://doi.org/10.1002/adma.201905508)
|
[2] |
Mariotti D and Sankaran R M 2010 J. Phys. D: Appl. Phys. 43 323001
|
[3] |
Schoenbach K H and Becker K 2016 Eur. Phys. J. D 70 29
|
[4] |
Bruggeman P and Brandenburg R 2013 J. Phys. D: Appl. Phys 46 464001
|
[5] |
Bruggeman P J et al 2016 Plasma Sources Sci. Technol. 25 053002
|
[6] |
Zhou R W et al 2016 PLoS One 11 e0155584
|
[7] |
Shirai N, Suga G and Sasaki K 2019 J. Phys. D: Appl. Phys. 52 39LT02
|
[8] |
Park H J et al 2018 Sci. Rep. 8 2422
|
[9] |
Mirpour S et al 2016 Sci. Rep. 6 29048
|
[10] |
Lin L L and Wang Q 2015 Plasma Chem. Plasma Process.35 925
|
[11] |
Wang Z et al 2018 Chem. Eng. J. 344 480
|
[12] |
Sun D et al 2019 Nanotechnology 30 455603
|
[13] |
Ma S et al 2017 Sep. Purif. Technol. 188 147
|
[14] |
Foster J E 2017 Phys. Plasmas 24 055501
|
[15] |
Zhou R W et al 2016 Sci. Rep. 6 32603
|
[16] |
Surowsky B, Schlüter O and Knorr D 2015 Food Eng. Rev.7 82
|
[17] |
Xu S F and Zhong X X 2016 Phys. Plasmas 23 010701
|
[18] |
Chen Z T et al 2017 Sci. Rep. 7 12163
|
[19] |
Wilson A et al 2008 Plasma Sources Sci. Technol. 17 045001
|
[20] |
Verreycken T, Bruggeman P and Leys C 2009 J. Appl. Phys.105 083312
|
[21] |
Zhang S Q and Dufour T 2018 Phys. Plasmas 25 073502
|
[22] |
Shirai N, Uchida S and Tochikubo F 2014 Plasma Sources Sci.Technol. 23 054010
|
[23] |
Miao S Y et al 2008 IEEE Trans. Plasma Sci. 36 126
|
[24] |
Trelles J P 2016 J. Phys. D: Appl. Phys. 49 393002
|
[25] |
Turing A M 1990 Bull. Math. Biol 52 153
|
[26] |
Rumbach P, Lindsay A E and Go D B 2019 Plasma Sources Sci. Technol. 28 105014
|
[27] |
Huang X J et al 2008 Phys. Plasmas 15 113504
|
[28] |
Phillips D M 1976 J. Phys. D: Appl. Phys. 9 507
|
[29] |
Porter R A and Harshbarger W R 1979 J. Electrochem. Soc.126 460
|
[30] |
Tuszewski M 2006 J. Appl. Phys. 100 053301
|
[31] |
Hartmann G and Johnson P C 1978 J. Phys. B: Atom. Mol.Phys. 11 1597
|
[32] |
Majeed A et al 2016 Plasma Process. Polym. 13 690
|
[33] |
Shirai N et al 2011 IEEE Trans. Plasma Sci. 39 2652
|
[34] |
Zheng P C et al 2014 Plasma Sources Sci. Technol. 24 015010
|
[1] | Pan LU, Dong-Wook KIM, Dong-Wha PARK. Simple reactor for the synthesis of silver nanoparticles with the assistance of ethanol by gas–liquid discharge plasma[J]. Plasma Science and Technology, 2019, 21(4): 44005-044005. DOI: 10.1088/2058-6272/aaeada |
[2] | Shuheng HU (胡淑恒), Xinghao LIU (刘行浩), Zimu XU (许子牧), Jiaquan WANG (汪家权), Yunxia LI (李云霞), Jie SHEN (沈洁), Yan LAN (兰彦), Cheng CHENG (程诚). Degradation and mineralization of ciprofloxacin by gas–liquid discharge non-thermal plasma[J]. Plasma Science and Technology, 2019, 21(1): 15501-015501. DOI: 10.1088/2058-6272/aade82 |
[3] | Linbo GU (顾林波), Yixi CAI (蔡忆昔), Yunxi SHI (施蕴曦), Jing WANG (王静), Xiaoyu PU (濮晓宇), Jing TIAN (田晶), Runlin FAN (樊润林). Effect of indirect non-thermal plasma on particle size distribution and composition of diesel engine particles[J]. Plasma Science and Technology, 2017, 19(11): 115503. DOI: 10.1088/2058-6272/aa7f6e |
[4] | ZHANG Liping (张丽萍). The Instability of Terahertz Plasma Waves in Two Dimensional Gated and Ungated Quantum Electron Gas[J]. Plasma Science and Technology, 2016, 18(4): 360-363. DOI: 10.1088/1009-0630/18/4/05 |
[5] | XIN Qing (辛青), ZHANG Yi (张轶), WU Kaibin (巫开斌). Degradation of Microcystin-LR by Gas-Liquid Interfacial Discharge Plasma[J]. Plasma Science and Technology, 2013, 15(12): 1221-1225. DOI: 10.1088/1009-0630/15/12/11 |
[6] | ZHU Daoyun (朱道云), ZHENG Changxi (郑昌喜), CHEN Dihu (陈弟虎), HE Zhenhui (何振辉). Plasma-Neutral Gas Structure in a Magnesium Cathodic Arc Operating at Oxygen Gas with Experimental Comparison[J]. Plasma Science and Technology, 2013, 15(11): 1116-1121. DOI: 10.1088/1009-0630/15/11/08 |
[7] | M. M. MORSHED, S. M. DANIELS. Electron Density and Optical Emission Measurements of SF6/O2 Plasmas for Silicon Etch Processes[J]. Plasma Science and Technology, 2012, 14(4): 316-320. DOI: 10.1088/1009-0630/14/4/09 |
[8] | LI Fuliang (李付亮), WANG Feng(汪沨), WANG Guoli(王国利), W. PFEIFFER, He Rongtao(何荣涛). Study of Formation and Propagation of Streamers in SF6 and Its Gas Mixtures with Low Content of SF6 Using a One-Dimensional Fluid Model[J]. Plasma Science and Technology, 2012, 14(3): 187-191. DOI: 10.1088/1009-0630/14/3/02 |
[9] | D. S. RAWAL, B. K. SEHGAL, R. MURALIDHARAN, H. K. MALIK. Experimental Study of the Influence of Process Pressure and Gas Composition on GaAs Etching Characteristics in Cl2/BCl3-Based Inductively Coupled Plasma[J]. Plasma Science and Technology, 2011, 13(2): 223-229. |
[10] | A. RAHMATI, H. BIDADI, K. AHMADI, F. HADIAN. Reactive DC Magnetron Sputter Deposited Titanium-Copper-Nitrogen Nano-Composite Thin Films with an Argon/Nitrogen Gas Mixture[J]. Plasma Science and Technology, 2010, 12(6): 681-687. |
1. | Tariq, U., Shukrullah, S., Khan, Y. et al. Analysis of an open-air argon plasma driven photo-Fenton reaction for degradation of synthetic dyes: Optical emission spectroscopy and statistical design optimization. AIP Advances, 2024, 14(11): 115319. DOI:10.1063/5.0241986 |
2. | Reema, Kakati, N., Radhakrishnanand, P., Sankaranarayanan, K. Insights on cold atmospheric plasma treatment of ethidium bromide and its binding to protein BSA. Physica Scripta, 2024, 99(9): 095609. DOI:10.1088/1402-4896/ad6bfa |
3. | Warne, G.R., Lim, M., Lamichhane, P. et al. Esterification and volatile compound manipulation using radiofrequency cold plasma. Innovative Food Science and Emerging Technologies, 2024. DOI:10.1016/j.ifset.2024.103726 |
4. | Warne, G.R., Lim, M., Wilkinson, K. et al. Radiofrequency cold plasma – A novel tool for flavour modification in fresh and freeze-dried strawberries. Innovative Food Science and Emerging Technologies, 2023. DOI:10.1016/j.ifset.2023.103497 |
5. | Zhang, X., Ma, X., Li, M. et al. Enhanced antibacterial activity of cotton via silver nanocapsules deposited by atmospheric pressure plasma jet. Plasma Science and Technology, 2023, 25(3): 035503. DOI:10.1088/2058-6272/ac92d2 |
6. | Allabakshi, S.M., Srikar, P.S.N.S.R., Gangwar, R.K. et al. Feasibility of surface dielectric barrier discharge in wastewater treatment: Spectroscopic modeling, diagnostic, and dye mineralization. Separation and Purification Technology, 2022. DOI:10.1016/j.seppur.2022.121344 |
7. | Raji, A., Vasu, D., Navaneetha Pandiyaraj, K. et al. Degradation and Detoxification of Remazol Blue Contaminants as a Model Textile Effluent via Advanced Nonthermal Plasma Oxidation Processes. IEEE Transactions on Plasma Science, 2022, 50(6): 1407-1415. DOI:10.1109/TPS.2022.3147544 |
8. | Raji, A., Vasu, D., Pandiyaraj, K.N. et al. Combinatorial effects of non-thermal plasma oxidation processes and photocatalytic activity on the inactivation of bacteria and degradation of toxic compounds in wastewater. RSC Advances, 2022, 12(22): 14246-14259. DOI:10.1039/d1ra09337a |
9. | Li, Y., Li, Z., Liu, Z. et al. Degradation of aniline in water with gaseous streamer corona plasma. Royal Society Open Science, 2021, 8(4): 202314. DOI:10.1098/rsos.202314 |
10. | Pandiyaraj, K.N., Vasu, D., Ghobeira, R. et al. Dye wastewater degradation by the synergetic effect of an atmospheric pressure plasma treatment and the photocatalytic activity of plasma-functionalized Cu‒TiO2 nanoparticles. Journal of Hazardous Materials, 2021. DOI:10.1016/j.jhazmat.2020.124264 |
11. | Navaneetha Pandiyaraj, K., Vasu, D., Ramkumar, M.C. et al. Improved degradation of textile effluents via the synergetic effects of Cu-CeO2 catalysis and non-thermal atmospheric pressure plasma treatment. Separation and Purification Technology, 2021. DOI:10.1016/j.seppur.2020.118037 |
12. | Mendez, J.A.C., Vong, Y.M., Escobedo, V.N.M. et al. A review on atmospheric pressure plasma jet and electrochemical evaluation of corrosion. Green Materials, 2021, 10(1): 11-22. DOI:10.1680/jgrma.20.00060 |
13. | Zhao, Y.-M., Patange, A., Sun, D.-W. et al. Plasma-activated water: Physicochemical properties, microbial inactivation mechanisms, factors influencing antimicrobial effectiveness, and applications in the food industry. Comprehensive Reviews in Food Science and Food Safety, 2020, 19(6): 3951-3979. DOI:10.1111/1541-4337.12644 |