Citation: | Ronggang WANG (王荣刚), Ben LI (李犇), Tongkai ZHANG (张桐恺), Jiting OUYANG (欧阳吉庭), Yurong SUN (孙玉荣). The influence of defects in a plasma photonic crystal on the characteristics of microwave transmittance[J]. Plasma Science and Technology, 2020, 22(8): 85002-085002. DOI: 10.1088/2058-6272/ab777b |
[1] |
Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
|
[2] |
John S 1987 Phys. Rev. Lett. 58 2486
|
[3] |
Yablonovitch E 2000 Science 289 557
|
[4] |
Joannopoulos J D, Meade R D and Winn J N 1995 Photonic Crystals: Molding the Flow of Light (Princeton, NJ: Princeton University Press)
|
[5] |
Fan S H et al 1997 Phys. Rev. Lett. 78 3294
|
[6] |
Fan S H and Joannopoulos J D 2002 Phys. Rev. B 65 235112
|
[7] |
Sakai O et al 2013 Phys. Plasmas 20 073506
|
[8] |
Villeneuve P R, Fan S H and Joannopoulos J D 1996 Phys.Rev. B 54 7837
|
[9] |
Chaudhari M K and Chaudhari S 2016 Phys. Plasmas 23 112118
|
[10] |
Wang B and Cappelli M A 2015 Appl. Phys. Lett. 107 171107
|
[11] |
Yin Y et al 2009 Phys. Plasmas 16 102103
|
[12] |
Shukla S, Prasad S and Singh V 2015 Phys. Plasmas 22 022122
|
[13] |
Hojo H, Akimoto K and Mase A 2004 J. Plasma Fusion Res.80 177
|
[14] |
Hojo H and Mase A 2004 J. Plasma Fusion Res. 80 89
|
[15] |
Fan W L and Dong L F 2010 Phys. Plasmas 17 073506
|
[16] |
Zhang L and Ouyang J T 2016 Plasma Sci. Technol. 18 266
|
[17] |
Zhang L and Ouyang J T 2014 Phys. Plasmas 21 103514
|
[18] |
Varault S et al 2011 Appl. Phys. Lett. 98 134103
|
[19] |
Wang B and Cappelli M A 2016 Appl. Phys. Lett. 108 161101
|
[20] |
Wang B et al 2017 Microw. Opt. Technol. Lett. 59 3097
|
[21] |
Liu S, Zhong S Y and Liu S Q 2009 Plasma Sci. Technol.11 14
|
[22] |
Kong X K et al 2010 Phys. Plasmas 17 103506
|
[23] |
Qi L, Yang Z and Fu T 2012 Phys. Plasmas 19 012509
|
[24] |
Sullivan D M 2000 Electromagnetic Simulation Using the FDTD Method 2nd edn (New York: Wiley)
|
[25] |
Yu W 2009 Electromagnetic Simulation Techniques Based on the FDTD Method (New York: Wiley)
|
[1] | Mingjie ZHOU, Haiyun TAN, Lanjian ZHUGE, Xuemei WU. Tunable topological edge state in plasma photonic crystals[J]. Plasma Science and Technology, 2024, 26(11): 115501. DOI: 10.1088/2058-6272/ad62d5 |
[2] | Zhicheng WU (吴志成), Mengfei DONG (董梦菲), Weili FAN (范伟丽), Kuangya GAO (高匡雅), Yueqiang LIANG (梁月强), Fucheng LIU (刘富成). Microwave transmittance characteristics in different uniquely designed one-dimensional plasma photonic crystals[J]. Plasma Science and Technology, 2021, 23(6): 64014-064014. DOI: 10.1088/2058-6272/abf6c1 |
[3] | Qinwen XUE (薛钦文), Xiaohua WANG (王晓华), Chenglin LIU (刘成林), Youwen LIU (刘友文). Pressure-controlled terahertz filter based on 1D photonic crystal with a defective semiconductor[J]. Plasma Science and Technology, 2018, 20(3): 35504-035504. DOI: 10.1088/2058-6272/aa98d8 |
[4] | WANG Guibin (王桂滨), ZHANG Lin (张林), HE Feng (何锋), OUYANG Jiting (欧阳吉庭). Numerical Study on Microwave Scattering by Various Plasma Objects[J]. Plasma Science and Technology, 2016, 18(8): 791-797. DOI: 10.1088/1009-0630/18/8/01 |
[5] | ZHANG Kaiming (张开明), SUN Dongsheng (孙东升). The Photonic Band Gaps in the Two-Dimensional Plasma Photonic Crystals with Rhombus Lattice[J]. Plasma Science and Technology, 2016, 18(6): 583-589. DOI: 10.1088/1009-0630/18/6/01 |
[6] | CHANG Lei (苌磊), LI Yinghong (李应红), WU Yun (吴云), ZHANG Huijie (张辉洁), WANG Weimin (王卫民), SONG Huimin (宋慧敏). Dynamic Control of Defective Gap Mode Through Defect Location[J]. Plasma Science and Technology, 2016, 18(1): 1-5. DOI: 10.1088/1009-0630/18/1/01 |
[7] | QI Limei (亓丽梅), LI Chao (李超), FANG Guangyou (方广有), GAO Xiang (高翔). The Absorbing Properties of Two-Dimensional Plasma Photonic Crystals[J]. Plasma Science and Technology, 2015, 17(1): 4-9. DOI: 10.1088/1009-0630/17/1/02 |
[8] | ZHANG Wenbo (张文波), WANG Shenggao (王升高), XU Chuanbo (许传波), XU Kaiwei (徐开伟), WANG Mingyang (王明洋), WANG Jianhua (汪建华), HUANG Zhiliang (黄志良), WANG Chuanxin (王传新). Reduction of Ilmenite Through Microwave Plasma[J]. Plasma Science and Technology, 2013, 15(5): 465-468. DOI: 10.1088/1009-0630/15/5/14 |
[9] | S. PRASAD, Vivek SINGH, A. K. SINGH. Study on the Reflection Spectra of One Dimensional Plasma Photonic Crystals Having Exponentially Graded Materials[J]. Plasma Science and Technology, 2013, 15(5): 443-447. DOI: 10.1088/1009-0630/15/5/10 |
[10] | Laxmi Shiveshwari. Some New Band Characteristics in One-Dimensional Plasma Dielectric Photonic Crystals[J]. Plasma Science and Technology, 2011, 13(4): 392-396. |
1. |
Wu, Z., Jia, M., Hou, X. et al. Band Gap Characteristics of h-BN Superlattice Plasma Photonic Crystals | [h-BN 型超晶格等离子体光子晶体能带特性研究]. Rengong Jingti Xuebao/Journal of Synthetic Crystals, 2023, 52(2): 252-260.
![]() | |
2. | Fan, W., Liu, C., Gao, K. et al. Reconfigurable plasma photonic crystals from triangular lattice to square lattice in dielectric barrier discharge. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021. DOI:10.1016/j.physleta.2021.127223 | |
3. | Yang, L., Chen, Y., Wu, S. et al. Tunability of the Terahertz Bandgap of One-dimensional Microplasma Photonic Crystals | [一维微等离子体光子晶体的太赫兹带隙特征调控]. Gaodianya Jishu/High Voltage Engineering, 2021, 47(3): 865-875. DOI:10.13336/j.1003-6520.hve.20210094 |