Advanced Search+
Ronggang WANG (王荣刚), Ben LI (李犇), Tongkai ZHANG (张桐恺), Jiting OUYANG (欧阳吉庭), Yurong SUN (孙玉荣). The influence of defects in a plasma photonic crystal on the characteristics of microwave transmittance[J]. Plasma Science and Technology, 2020, 22(8): 85002-085002. DOI: 10.1088/2058-6272/ab777b
Citation: Ronggang WANG (王荣刚), Ben LI (李犇), Tongkai ZHANG (张桐恺), Jiting OUYANG (欧阳吉庭), Yurong SUN (孙玉荣). The influence of defects in a plasma photonic crystal on the characteristics of microwave transmittance[J]. Plasma Science and Technology, 2020, 22(8): 85002-085002. DOI: 10.1088/2058-6272/ab777b

The influence of defects in a plasma photonic crystal on the characteristics of microwave transmittance

Funds: This work was partly supported by National Natural Science Foundation of China (No. 11475019)
More Information
  • Received Date: November 13, 2019
  • Revised Date: February 15, 2020
  • Accepted Date: February 16, 2020
  • Plasma photonic crystals (PPCs) have been a hot research topic in the band gap (BG) material field in recent years due to their unique advantages, such as the feasibility of changing the parameters and hence the properties of the materials with respect to traditional photonic crystals (PCs). In this paper, we focus mainly on the effects of some types of defects introduced in PPCs on the changes in BG characteristics of microwave (MW) transmittance. The research is carried out using numerical simulation with a one-dimensional finite-difference time-domain (FDTD) method, and six types of defects, including a lattice-constant defect, radii-ratio defect, additional-column defect, column-width defect, plasma-frequency defect, and electron-collision-frequency defect, are concerned. It transpires that introducing a defect in a PPC in different manners may realize the symmetric change, alternative change, shifting, generating, transforming, disappearing, and attenuating of BGs in transmittance spectra, which has great potential for the manufacture of spatiotemporal-controllable MW materials and devices with more feasible modulating functions.
  • [1]
    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
    [2]
    John S 1987 Phys. Rev. Lett. 58 2486
    [3]
    Yablonovitch E 2000 Science 289 557
    [4]
    Joannopoulos J D, Meade R D and Winn J N 1995 Photonic Crystals: Molding the Flow of Light (Princeton, NJ: Princeton University Press)
    [5]
    Fan S H et al 1997 Phys. Rev. Lett. 78 3294
    [6]
    Fan S H and Joannopoulos J D 2002 Phys. Rev. B 65 235112
    [7]
    Sakai O et al 2013 Phys. Plasmas 20 073506
    [8]
    Villeneuve P R, Fan S H and Joannopoulos J D 1996 Phys.Rev. B 54 7837
    [9]
    Chaudhari M K and Chaudhari S 2016 Phys. Plasmas 23 112118
    [10]
    Wang B and Cappelli M A 2015 Appl. Phys. Lett. 107 171107
    [11]
    Yin Y et al 2009 Phys. Plasmas 16 102103
    [12]
    Shukla S, Prasad S and Singh V 2015 Phys. Plasmas 22 022122
    [13]
    Hojo H, Akimoto K and Mase A 2004 J. Plasma Fusion Res.80 177
    [14]
    Hojo H and Mase A 2004 J. Plasma Fusion Res. 80 89
    [15]
    Fan W L and Dong L F 2010 Phys. Plasmas 17 073506
    [16]
    Zhang L and Ouyang J T 2016 Plasma Sci. Technol. 18 266
    [17]
    Zhang L and Ouyang J T 2014 Phys. Plasmas 21 103514
    [18]
    Varault S et al 2011 Appl. Phys. Lett. 98 134103
    [19]
    Wang B and Cappelli M A 2016 Appl. Phys. Lett. 108 161101
    [20]
    Wang B et al 2017 Microw. Opt. Technol. Lett. 59 3097
    [21]
    Liu S, Zhong S Y and Liu S Q 2009 Plasma Sci. Technol.11 14
    [22]
    Kong X K et al 2010 Phys. Plasmas 17 103506
    [23]
    Qi L, Yang Z and Fu T 2012 Phys. Plasmas 19 012509
    [24]
    Sullivan D M 2000 Electromagnetic Simulation Using the FDTD Method 2nd edn (New York: Wiley)
    [25]
    Yu W 2009 Electromagnetic Simulation Techniques Based on the FDTD Method (New York: Wiley)
  • Related Articles

    [1]Mingjie ZHOU, Haiyun TAN, Lanjian ZHUGE, Xuemei WU. Tunable topological edge state in plasma photonic crystals[J]. Plasma Science and Technology, 2024, 26(11): 115501. DOI: 10.1088/2058-6272/ad62d5
    [2]Zhicheng WU (吴志成), Mengfei DONG (董梦菲), Weili FAN (范伟丽), Kuangya GAO (高匡雅), Yueqiang LIANG (梁月强), Fucheng LIU (刘富成). Microwave transmittance characteristics in different uniquely designed one-dimensional plasma photonic crystals[J]. Plasma Science and Technology, 2021, 23(6): 64014-064014. DOI: 10.1088/2058-6272/abf6c1
    [3]Qinwen XUE (薛钦文), Xiaohua WANG (王晓华), Chenglin LIU (刘成林), Youwen LIU (刘友文). Pressure-controlled terahertz filter based on 1D photonic crystal with a defective semiconductor[J]. Plasma Science and Technology, 2018, 20(3): 35504-035504. DOI: 10.1088/2058-6272/aa98d8
    [4]WANG Guibin (王桂滨), ZHANG Lin (张林), HE Feng (何锋), OUYANG Jiting (欧阳吉庭). Numerical Study on Microwave Scattering by Various Plasma Objects[J]. Plasma Science and Technology, 2016, 18(8): 791-797. DOI: 10.1088/1009-0630/18/8/01
    [5]ZHANG Kaiming (张开明), SUN Dongsheng (孙东升). The Photonic Band Gaps in the Two-Dimensional Plasma Photonic Crystals with Rhombus Lattice[J]. Plasma Science and Technology, 2016, 18(6): 583-589. DOI: 10.1088/1009-0630/18/6/01
    [6]CHANG Lei (苌磊), LI Yinghong (李应红), WU Yun (吴云), ZHANG Huijie (张辉洁), WANG Weimin (王卫民), SONG Huimin (宋慧敏). Dynamic Control of Defective Gap Mode Through Defect Location[J]. Plasma Science and Technology, 2016, 18(1): 1-5. DOI: 10.1088/1009-0630/18/1/01
    [7]QI Limei (亓丽梅), LI Chao (李超), FANG Guangyou (方广有), GAO Xiang (高翔). The Absorbing Properties of Two-Dimensional Plasma Photonic Crystals[J]. Plasma Science and Technology, 2015, 17(1): 4-9. DOI: 10.1088/1009-0630/17/1/02
    [8]ZHANG Wenbo (张文波), WANG Shenggao (王升高), XU Chuanbo (许传波), XU Kaiwei (徐开伟), WANG Mingyang (王明洋), WANG Jianhua (汪建华), HUANG Zhiliang (黄志良), WANG Chuanxin (王传新). Reduction of Ilmenite Through Microwave Plasma[J]. Plasma Science and Technology, 2013, 15(5): 465-468. DOI: 10.1088/1009-0630/15/5/14
    [9]S. PRASAD, Vivek SINGH, A. K. SINGH. Study on the Reflection Spectra of One Dimensional Plasma Photonic Crystals Having Exponentially Graded Materials[J]. Plasma Science and Technology, 2013, 15(5): 443-447. DOI: 10.1088/1009-0630/15/5/10
    [10]Laxmi Shiveshwari. Some New Band Characteristics in One-Dimensional Plasma Dielectric Photonic Crystals[J]. Plasma Science and Technology, 2011, 13(4): 392-396.
  • Cited by

    Periodical cited type(3)

    1. Wu, Z., Jia, M., Hou, X. et al. Band Gap Characteristics of h-BN Superlattice Plasma Photonic Crystals | [h-BN 型超晶格等离子体光子晶体能带特性研究]. Rengong Jingti Xuebao/Journal of Synthetic Crystals, 2023, 52(2): 252-260.
    2. Fan, W., Liu, C., Gao, K. et al. Reconfigurable plasma photonic crystals from triangular lattice to square lattice in dielectric barrier discharge. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021. DOI:10.1016/j.physleta.2021.127223
    3. Yang, L., Chen, Y., Wu, S. et al. Tunability of the Terahertz Bandgap of One-dimensional Microplasma Photonic Crystals | [一维微等离子体光子晶体的太赫兹带隙特征调控]. Gaodianya Jishu/High Voltage Engineering, 2021, 47(3): 865-875. DOI:10.13336/j.1003-6520.hve.20210094

    Other cited types(0)

Catalog

    Article views (145) PDF downloads (84) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return