Advanced Search+
Chi-Shung YIP (叶孜崇), Wei ZHANG (张炜), Guosheng XU (徐国盛), Noah HERSHKOWITZ. Automated electron temperature fitting of Langmuir probe I-V trace in plasmas with multiple Maxwellian EEDFs[J]. Plasma Science and Technology, 2020, 22(8): 85404-085404. DOI: 10.1088/2058-6272/ab7f3d
Citation: Chi-Shung YIP (叶孜崇), Wei ZHANG (张炜), Guosheng XU (徐国盛), Noah HERSHKOWITZ. Automated electron temperature fitting of Langmuir probe I-V trace in plasmas with multiple Maxwellian EEDFs[J]. Plasma Science and Technology, 2020, 22(8): 85404-085404. DOI: 10.1088/2058-6272/ab7f3d

Automated electron temperature fitting of Langmuir probe I-V trace in plasmas with multiple Maxwellian EEDFs

Funds: This work is supported by the Chinese Academy of Science Hundred Youth Talent Program Start-up Funding, CAS Key Research Program of Frontier Sciences (No. QYZDB-SSW- SLH001), National Natural Science Foundation of China (Nos. 11875285, 11575248 and 11505220), as well as US National Science Foundation Award (No. 1804654).
More Information
  • Received Date: November 19, 2019
  • Revised Date: March 08, 2020
  • Accepted Date: March 10, 2020
  • An algorithm for automated fitting of the effective electron temperature from a planar Langmuir probe I–V trace taken in a plasma with multiple Maxwellian electron populations is developed through MATLAB coding. The code automatically finds a fitting range suitable for analyzing the temperatures of each of the electron populations. The algorithm is used to analyze I–V traces from both the Institute of Plasma Physics Chinese Academy of Sciences’s Diagnostic Test Source device and a similar multi-dipole chamber at the University of Wisconsin–Madison. I–V traces reconstructed from the parameters fitted by the algorithm not only agree with the measured I–V trace but also reveal physical properties consistent with those found in previous studies. Cylindrical probe traces are also analyzed with the algorithm and it is shown that the major source of error in such attempts is the disruption of the inflection point due to both decreased signal-to-noise ratio and greater sheath expansion. It is thus recommended to use planar probes with radii much greater than the plasma Debye length when signal-to-noise ratio is poor.
  • [1]
    Langmuir I 1925 Phys. Rev. 26 585
    [2]
    Xu J C et al 2018 IEEE Trans. Plasma Sci. 46 1331
    [3]
    Xu J C et al 2016 Rev. Sci. Instrum. 87 083504
    [4]
    Bilik N et al 2015 J. Phys. D: Appl. Phys. 48 105204
    [5]
    MacKenzie K R et al 1971 Appl. Phys. Lett. 18 529
    [6]
    Itagaki N et al 2001 Thin Solid Films 390 202
    [7]
    Cao X G et al 2015 Plasma Sci. Technol. 17 20
    [8]
    Mendil D, Lahmar H and Boufendi L 2014 Plasma Sci.Technol. 16 837
    [9]
    Barnat E V and Weatherford B R 2015 Plasma Sources Sci.Technol. 24 055024
    [10]
    Yip C S et al 2013 Plasma Sources Sci. Technol. 22 065002
    [11]
    Godyak V A and Demidov V I 2011 J. Phys. D: Appl. Phys. 44 33001
    [12]
    Popov T K et al 2012 Plasma Sources Sci. Technol. 21 025004
    [13]
    Yip C S and Hershkowitz N 2015 J. Phys. D: Appl. Phys. 48 395201
    [14]
    Stamate E and Ohe K 2002 J. Vac. Sci. Technol. A 20 661
    [15]
    Thomas T L and Battle E L 1970 J. Appl. Phys. 41 3428
    [16]
    Yip C S and Hershkowitz N 2015 Plasma Sources Sci.Technol. 24 034004
    [17]
    Mizumura M et al 1992 J. Phys. D: Appl. Phys. 25 1744
    [18]
    Limpaecher R and MacKenzie K R 1973 Rev. Sci. Instrum.44 726
    [19]
    Riemann K U 1991 J. Phys. D: Appl. Phys. 24 493
    [20]
    Riemann K U 1995 IEEE Trans. Plasma Sci. 23 709
    [21]
    Hershkowitz N 1989 How langmuir probes work ed O Auciello and D L Flamm Plasma Diagnostics (New York:Academic)
    [22]
    Sheridan T E 2000 Phys. Plasmas 7 3084
    [23]
    Lee D and Hershkowitz N 2007 Phys. Plasmas 14 033507
    [24]
    Godyak V A, Piejak R B and Alexandrovich B M 1993 J. Appl. Phys. 73 3657
  • Related Articles

    [1]Kunihiro OGAWA, Mitsutaka ISOBE, Takeo NISHITANI, Sadayoshi MURAKAMI, Ryosuke SEKI, Hideo NUGA, Neng PU, Masaki OSAKABE, LHD Experiment Group. Study of first orbit losses of 1 MeV tritons using the Lorentz orbit code in the LHD[J]. Plasma Science and Technology, 2019, 21(2): 25102-025102. DOI: 10.1088/2058-6272/aaeba8
    [2]Chundong HU (胡纯栋), Yongjian XU (许永建), Yuanlai XIE (谢远来), Yahong XIE (谢亚红), Lizhen LIANG (梁立振), Caichao JIANG (蒋才超), Sheng LIU (刘胜), Jianglong WEI (韦江龙), Peng SHENG (盛鹏), Zhimin LIU (刘智民), Ling TAO (陶玲), the NBI Team. Thermal analysis of EAST neutral beam injectors for long-pulse beam operation[J]. Plasma Science and Technology, 2018, 20(4): 45602-045602. DOI: 10.1088/2058-6272/aaa4f0
    [3]HU Chundong (胡纯栋), CHEN Yu (陈宇), XU Yongjian (许永建), YU Ling (于玲), LI Xiang (栗翔), ZHANG Weitang (张为堂), NBI Group. Analysis of the Pipe Heat Loss of the Water Flow Calorimetry System in EAST Neutral Beam Injector[J]. Plasma Science and Technology, 2016, 18(11): 1139-1142. DOI: 10.1088/1009-0630/18/11/13
    [4]HU Chundong (胡纯栋) for the NBI team. Achievement of 100 s Long Pulse Neutral Beam Extraction in EAST Neutral Beam Injector[J]. Plasma Science and Technology, 2013, 15(3): 201-203. DOI: 10.1088/1009-0630/15/3/01
    [5]HU Chundong (胡纯栋) for the NBI team. Preliminary Results of Ion Beam Extraction Tests on EAST Neutral Beam Injector[J]. Plasma Science and Technology, 2012, 14(10): 871-873. DOI: 10.1088/1009-0630/14/10/03
    [6]WU Guojiang (吴国将), ZHANG Xiaodong (张晓东). Calculations of the Ion Orbit Loss Region at the Edge of EAST[J]. Plasma Science and Technology, 2012, 14(9): 789-793. DOI: 10.1088/1009-0630/14/9/03
    [7]HU Chundong(胡纯栋), NBI Team. Conceptual Design of Neutral Beam Injection System for EAST[J]. Plasma Science and Technology, 2012, 14(6): 567-572. DOI: 10.1088/1009-0630/14/6/30
    [8]SHI Qilin (施齐林), HU Chundong (胡纯栋), SHENG Peng (盛鹏), SONG Shihua (宋士花). Design of Control Server Application Software for Neutral Beam Injection System[J]. Plasma Science and Technology, 2012, 14(4): 343-346. DOI: 10.1088/1009-0630/14/4/14
    [9]LI Jibo(李吉波), DING Siye(丁斯晔), WU Bin(吴斌), HU Chundong(胡纯栋). Simulations of Neutral Beam Ion Ripple Loss on EAST[J]. Plasma Science and Technology, 2012, 14(1): 78-82. DOI: 10.1088/1009-0630/14/1/17
    [10]HU Chundong (胡纯栋), LIANG Lizhen (梁立振), XIE Yuanlai (谢远来), WEI Jianglong (韦江龙), XIE Yahong (谢亚红), LI Jun (李军), LIU Zhimin (刘智民), LIU Sheng (刘胜), JIANG Caichago (蒋才超), SHENG Peng (盛鹏), XU Yongjian (许永建). Design of Neutral Beam-Line of EAST[J]. Plasma Science and Technology, 2011, 13(5): 541-545.
  • Cited by

    Periodical cited type(3)

    1. Wu, Z., Jia, M., Hou, X. et al. Band Gap Characteristics of h-BN Superlattice Plasma Photonic Crystals | [h-BN 型超晶格等离子体光子晶体能带特性研究]. Rengong Jingti Xuebao/Journal of Synthetic Crystals, 2023, 52(2): 252-260.
    2. Fan, W., Liu, C., Gao, K. et al. Reconfigurable plasma photonic crystals from triangular lattice to square lattice in dielectric barrier discharge. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021. DOI:10.1016/j.physleta.2021.127223
    3. Yang, L., Chen, Y., Wu, S. et al. Tunability of the Terahertz Bandgap of One-dimensional Microplasma Photonic Crystals | [一维微等离子体光子晶体的太赫兹带隙特征调控]. Gaodianya Jishu/High Voltage Engineering, 2021, 47(3): 865-875. DOI:10.13336/j.1003-6520.hve.20210094

    Other cited types(0)

Catalog

    Article views (161) PDF downloads (214) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return