Advanced Search+
Fengdong JIA (贾凤东), Yong WU (吴勇), Qi MIN (敏琦), Maogen SU (苏茂根), Keigo TAKEDA, Kenji ISHIKAWA, Hiroki KONDO, Makoto SEKINE, Masaru HORI, Zhiping ZHONG (钟志萍). Characterization of a microsecond pulsed non-equilibrium atmospheric pressure Ar plasma using laser scattering and optical emission spectroscopy[J]. Plasma Science and Technology, 2020, 22(6): 65404-065404. DOI: 10.1088/2058-6272/ab84e2
Citation: Fengdong JIA (贾凤东), Yong WU (吴勇), Qi MIN (敏琦), Maogen SU (苏茂根), Keigo TAKEDA, Kenji ISHIKAWA, Hiroki KONDO, Makoto SEKINE, Masaru HORI, Zhiping ZHONG (钟志萍). Characterization of a microsecond pulsed non-equilibrium atmospheric pressure Ar plasma using laser scattering and optical emission spectroscopy[J]. Plasma Science and Technology, 2020, 22(6): 65404-065404. DOI: 10.1088/2058-6272/ab84e2

Characterization of a microsecond pulsed non-equilibrium atmospheric pressure Ar plasma using laser scattering and optical emission spectroscopy

Funds: This work is supported by the National Key Research and Development Program of China (Nos. 2017YFA0402300, 2017YFA0304900 and 2016YFA0300600), National Natural Science Foundation of China (Nos. 11604334, 11575099, 11474347 and 11874051), the Strategic Priority Research Program of Chinese Academy of Sciences (Nos. XDB28000000 and XDB07030000), the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics (KF201807).
More Information
  • Received Date: November 27, 2019
  • Revised Date: March 21, 2020
  • Accepted Date: March 25, 2020
  • A non-equilibrium atmospheric pressure argon (Ar) plasma excited by microsecond pulse is studied experimentally by laser scattering and optical emission spectroscopy (OES), and theoretically by collisional-radiative (CR) model. More specifically, the electron temperature and electron density of plasma are obtained directly by the laser Thomson scattering, the gas temperature is measured by laser Raman scattering, the optical emissions of excited Ar states of plasma are measured by OES. The laser scattering results show that the electron temperature is about 1 eV which is similar to that excited by 60 Hz AC power, but the gas temperature is as low as 300 K compared to about 700 K excited by 60 Hz AC power. It is shown that the microsecond pulsed power supply, rather than nanosecond ones, is short enough to reduce the gas temperature of atmospheric pressure plasma to near room temperature. The electron temperature and electron density are also obtained by CR model based on OES, and find that the intensities of the optical emission intensity lines of 727.41, 811.73, 841.08, 842.83, 852.44 and 912.86 nm of Ar can be used to characterize the behavior of electron density and electron temperature, it is very useful to quickly estimate the activity of the atmospheric pressure Ar plasma in many applications.
  • [1]
    Shimizu Y et al 2009 Appl. Phys. Lett. 94 191504
    [2]
    Iwasaki M et al 2008 Appl. Phys. Lett. 92 081503
    [3]
    Fridman G et al 2008 Plasma Process. Polym. 5 503
    [4]
    Gweon B et al 2011 Appl. Phys. Lett. 99 063701
    [5]
    Park S et al 2019 Adv. Phys. X 4 1526114
    [6]
    Takahashi Y et al 2018 J. Phys. D: Appl. Phys. 51 115401
    [7]
    Kim K et al 2011 Appl. Phys. Lett. 98 073701
    [8]
    Iseki S et al 2011 Appl. Phys. Express 4 116201
    [9]
    Hashizume H et al 2013 Appl. Phys. Lett. 103 153708
    [10]
    Uchida G et al 2018 Japan. J. Appl. Phys. 57 0102B4
    [11]
    Takeda K et al 2017 J. Phys. D: Appl. Phys. 50 195202
    [12]
    Liu S and Neiger M 2001 J. Phys. D: Appl. Phys. 34 1632
    [13]
    Laroussi M et al 2004 J. Appl. Phys. 96 3028
    [14]
    Donnelly V M 2004 J. Phys. D: Appl. Phys. 37 R217
    [15]
    Kelkar U M et al 1999 J. Vac. Sci. Technol. A 17 125
    [16]
    Mariotti D et al 2004 Plasma Sources Sci. Technol. 13 576
    [17]
    Palmero A et al 2007 J. Appl. Phys. 101 053306
    [18]
    Kramida A et al 2019 Nist atomic spectra database (ver.5.5.1)(https://doi.org/10.18434/T4W30F)
    [19]
    Santiago I and Calzada M D 2007 Appl. Spectrosc. 61 725
    [20]
    Gavare Z et al 2006 Plasma Sources Sci. Technol. 15 391
    [21]
    Boffard J B et al 2009 Plasma Sources Sci. Technol. 18 035017
    [22]
    Zhu X M et al 2009 J. Phys. D: Appl. Phys. 42 142003
    [23]
    Zhu X M and Pu Y K 2010 J. Phys. D: Appl. Phys. 43 015204
    [24]
    Evdokimov K E et al 2017 Russ. Phys. J. 60 765
    [25]
    Malyshev M V and Donnelly V M 1999 Phys. Rev. E 60 6016
    [26]
    Jia F D et al 2011 Appl. Phys. Express 4 026101
    [27]
    Kono A and Nakatani K 2000 Rev. Sci. Instrum. 71 2716
    [28]
    van de Sande M J and van der Mullen J J A M 2002 J. Phys. D:Appl. Phys. 35 1381
    [29]
    Staack D et al 2005 Plasma Sources Sci. Technol. 14 700
    [30]
    Kono A and Iwamoto K 2004 Japan. J. Appl. Phys. 43 L1010
    [31]
    Walsh J L and Kong M G 2007 Appl. Phys. Lett. 91 221502
    [32]
    Griem H R 1963 Phys. Rev. 131 1170
    [33]
    Lichten W 1957 J. Chem. Phys. 26 306
  • Related Articles

    [1]Borui ZHENG, Jianbo ZHANG, Shaojie QI, Jianghua XU, Yiche LI, Yuanzhong JIN, Dongliang BIAN. Spatiotemporal evolution laws of sector-shaped dielectric-barrier-discharge plasma actuator[J]. Plasma Science and Technology, 2024, 26(10): 105504. DOI: 10.1088/2058-6272/ad5d4f
    [2]Simin ZHOU (周思敏), Xiutao HUANG (黄修涛), Minghai LIU (刘明海). Electrical model and experimental analysis of a double spiral structure surface dielectric barrier discharge[J]. Plasma Science and Technology, 2019, 21(6): 65401-065401. DOI: 10.1088/2058-6272/ab0814
    [3]D C SEOK, S R YOO, K I LEE, Y S CHOI, Y H JUNG. Relation between etching profile and voltage–current shape of sintered SiC etching by atmospheric pressure plasma[J]. Plasma Science and Technology, 2019, 21(4): 45504-045504. DOI: 10.1088/2058-6272/aaf9e9
    [4]Xiong YANG (杨雄), Mousen CHENG (程谋森), Dawei GUO (郭大伟), Moge WANG (王墨戈), Xiaokang LI (李小康). Characteristics of temporal evolution of particle density and electron temperature in helicon discharge[J]. Plasma Science and Technology, 2017, 19(10): 105402. DOI: 10.1088/2058-6272/aa808a
    [5]ZHU Yuanfeng(祝远锋), CHEN Mingyang(陈明阳), WANG Hua(王华), ZHANG Yongkang(张永康), YANG Jichang(杨继昌). Design of a Surface-Plasmon-Resonance Sensor Based on a Microstructured Optical Fiber with Annular-Shaped Holes[J]. Plasma Science and Technology, 2014, 16(9): 867-872. DOI: 10.1088/1009-0630/16/9/11
    [6]SHI Jiankui(史建魁), WANG Zheng(王铮), TAO Wei(陶伟), G. A. ZHEREBTSOV, E. B. ROMANOVA, K. G. RATOVSKY. Investigation of Total Absorption of Radio Waves in High Latitude Ionosphere[J]. Plasma Science and Technology, 2014, 16(9): 833-836. DOI: 10.1088/1009-0630/16/9/05
    [7]HE Yihua(贺艺华), ZHOU Qinghua(周庆华), YANG Chang(杨昶), ZHOU Xiaoping(周晓萍), LIU Si(刘斯), TANG Lijun(唐立军), XIAO Fuliang(肖伏良). Modeling the Evolution of Chorus Waves into Hiss Waves in the Magnetosphere[J]. Plasma Science and Technology, 2014, 16(7): 657-660. DOI: 10.1088/1009-0630/16/7/05
    [8]XU Xiufeng (徐修峰), LI Shiping (李世平), CAO Hongrui (曹宏睿), YUAN Guoliang (袁国梁), YANG Qingwei (杨青巍), YIN Zejie (阴泽杰). The Neutron-Gamma Pulse Shape Discrimination Method for Neutron Flux Detection in the ITER[J]. Plasma Science and Technology, 2013, 15(5): 417-419. DOI: 10.1088/1009-0630/15/5/04
    [9]LI Yonggang (李永钢), ZHOU Wanghuai (周望怀), HUANG Liangfeng (黄良锋), NING Ronghui (宁荣辉), ZENG Zhi (曾雉)#, JU Xin (巨新). The Accumulation of He on a W Surface During keV-He Irradiation: Cluster Dynamics Modeling[J]. Plasma Science and Technology, 2012, 14(7): 624-628. DOI: 10.1088/1009-0630/14/7/13
    [10]JING Jia (景佳), PEI Xi (裴曦), WANG Dong (汪冬), CAO Ruifen(曹瑞芬), LIN Hui(林辉), WU Yican(吴宜灿), FDS Team. Leaf Sequencing Algorithm Based on MLC Shape Constraint[J]. Plasma Science and Technology, 2012, 14(6): 563-566. DOI: 10.1088/1009-0630/14/6/29

Catalog

    Article views (164) PDF downloads (149) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return