Advanced Search+
Tianliang ZHANG (张天亮), Kaiyin JIANG (姜开银), Zhongwei LIU (刘忠伟), Lizhen YANG (杨丽珍), Haibao ZHANG (张海宝), Jiting OUYANG (欧阳吉庭), Qiang CHEN (陈强). Characteristics of inductively coupled plasma (ICP) and helicon plasma in a single-loop antenna[J]. Plasma Science and Technology, 2020, 22(8): 85405-085405. DOI: 10.1088/2058-6272/ab8551
Citation: Tianliang ZHANG (张天亮), Kaiyin JIANG (姜开银), Zhongwei LIU (刘忠伟), Lizhen YANG (杨丽珍), Haibao ZHANG (张海宝), Jiting OUYANG (欧阳吉庭), Qiang CHEN (陈强). Characteristics of inductively coupled plasma (ICP) and helicon plasma in a single-loop antenna[J]. Plasma Science and Technology, 2020, 22(8): 85405-085405. DOI: 10.1088/2058-6272/ab8551

Characteristics of inductively coupled plasma (ICP) and helicon plasma in a single-loop antenna

Funds: This study was partly supported by National Natural Science Foundation of China (No. 11975047).
More Information
  • Received Date: December 23, 2019
  • Revised Date: March 29, 2020
  • Accepted Date: March 30, 2020
  • Large area uniform plasma sources, such as high-density magnetized inductively coupled plasma (ICP) and helicon plasma, have broad applications in industry. A comprehensive comparison of ICP and helicon plasma, excited by a single-loop antenna, is presented in this paper from the perspectives of mode transition, hysteresis behavior, and density distribution. The E-H mode transition in ICP and the E-H-W mode transition in helicon plasma are clearly observed in the experiments. Besides, the considerable variation of hysteresis behavior from inverse hysteresis to normal hysteresis by the influence of the magnetic field is explored. The bi-Maxwellian and Maxwellian electron energy distribution functions in each discharge are used to explain this phenomenon, which is essentially related to the transition from a nonlocal kinetic property to a local kinetic property of electrons. In addition, we notice that the plasma density, in the radial direction, is peaked in the center of the tube in ICP, but a complicated distribution is formed in helicon plasma. In the axial direction, the maximum plasma density is still in the center of the antenna in ICP, whereas the highest plasma density is located downstream, far away from the antenna, in helicon plasma. It is believed that the reflected electrons in the sheath and pre-sheath by the upper metallic endplate and downstream propagated helicon wave will be responsible for this plasma density profile in helicon plasma. Due to the constrained electron motion in the magnetic field, an extremely uniform density distribution will be obtained with an appropriate axial magnetic field in the wave discharge mode.
  • [1]
    Boswell R W 1970 Phys. Lett. A 33 457
    [2]
    Klozenberg J P, McNamara B and Thonemann P C 1965 J. Fluid Mech. 21 545
    [3]
    Davies B and Christiansen P J 1969 Plasma Phys. 11 987
    [4]
    Porte L et al 2003 Plasma Sources Sci. Technol. 12 287
    [5]
    Shinohara S et al 2009 Phys. Plasmas 16 057104
    [6]
    Shinohara S, Tanikawa T and Motomura T 2014 Rev. Sci.Instrum. 85 093509
    [7]
    Blackwell D D et al 2002 Phys. Rev. Lett. 88 145002
    [8]
    Chen F F 1991 Plasma Phys. Control. Fusion 33 339
    [9]
    Blackwell D D and Chen F F 1997 Plasma Sources Sci.Technol. 6 569
    [10]
    Loewenhardt P K et al 1991 Phys. Rev. Lett. 67 2792
    [11]
    Molvik A W, Ellingboe A R and Rognlien T D 1997 Phys.Rev. Lett. 79 233
    [12]
    Chen F F and Blackwell D D 1999 Phys. Rev. Lett. 82 2677
    [13]
    Trivelpiece A W and Gould R W 1959 J. Appl. Phys. 30 1784
    [14]
    Chen F F 2015 Plasma Sources Sci. Technol. 24 014001
    [15]
    Shamrai K P and Taranov V B 1996 Plasma Sources Sci.Technol. 5 474
    [16]
    Chi K K, Sheridan T E and Boswell R W 1999 Plasma Sources Sci. Technol. 8 421
    [17]
    Zhao G et al 2017 Phys. Plasmas 24 123507
    [18]
    Wang H H et al 2019 Plasma Sci. Technol. 21 074009
    [19]
    Ma C et al 2015 IEEE Trans. Plasma Sci. 43 3702
    [20]
    Lee D K, Lee J J and Joo J 2003 Surf. Coat. Technol.174–175 1234
    [21]
    Logue M D et al 2012 Plasma Sources Sci. Technol. 21 065009
    [22]
    Lee H C 2018 Appl. Phys. Rev. 5 011108
    [23]
    Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing 2nd edn (New York: Wiley)
    [24]
    Tadokoro M et al 1998 Phys. Rev. E 58 7823
    [25]
    Kortshagen U, Pukropski I and Tsendin L D 1995 Phys. Rev. E 51 6063
    [26]
    Mümken G and Kortshagen U 1996 J. Appl. Phys. 80 6639
    [27]
    Kortshagen U, Pukropski I and Zethoff M 1994 J. Appl. Phys.76 2048
    [28]
    Kortshagen U et al 2002 Appl. Surf. Sci. 192 244
    [29]
    Kortshagen U and Tsendin L D 1994 Appl. Phys. Lett. 65 1355
    [30]
    Seo S H et al 2000 Phys. Rev. E 62 7155
    [31]
    Kolobov V I et al 1994 Appl. Phys. Lett. 65 537
    [32]
    Oelerich-Hill G, Pukropski I and Kujawka M 1991 J. Phys. D:Appl. Phys. 24 593
    [33]
    Turner M M and Lieberman M A 1999 Plasma Sources Sci.Technol. 8 313
    [34]
    Lee M H and Chung C W 2006 Phys. Plasmas 13 063510
    [35]
    Ding Z F et al 2008 Phys. Plasmas 15 063506
    [36]
    Gao F et al 2010 Phys. Plasmas 17 103507
    [37]
    Lee H C, Kim D H and Chung C W 2013 Appl. Phys. Lett. 102 234104
    [38]
    Zhou L F et al 2015 Vacuum 119 209
    [39]
    Lee M H et al 2007 Appl. Phys. Lett. 90 191502
    [40]
    Siebold H 1988 IEEE Trans. Magn. 24 408
    [41]
    Chabert P and Braithwaite N 2011 Physics of Radio-Frequency Plasmas (Cambridge: Cambridge University Press)
    [42]
    Chen F F 2003 Phys. Plasmas 10 2586
    [43]
    Chen F F et al 1997 Plasma Phys. Control. Fusion 39 A411
    [44]
    Lee M H and Chung C W 2010 Plasma Sources Sci. Technol.19 015011
    [45]
    Xu S et al 2000 J. Vac. Sci. Technol. A 18 2185
    [46]
    Suzuki K et al 1998 Plasma Sources Sci. Technol. 7 13
    [47]
    El-Fayoumi I M, Jones I R and Turner M M 1998 J. Phys. D:Appl. Phys. 31 3082
    [48]
    Lee H C and Chung C W 2015 Sci. Rep. 5 15254
    [49]
    Chen F F 2012 Plasma Sources Sci. Technol. 21 055013
    [50]
    Kim J Y et al 2013 Phys. Plasmas 20 101612
    [51]
    Kim Y D et al 2013 Phys. Plasmas 20 023505
    [52]
    Spitzer L Jr 1956 Physics of Fully Ionized Gases (New York:Interscience Publishers)
    [53]
    Godyak V A and Piejak R B 1990 Phys. Rev. Lett. 65 996
    [54]
    You S J and Chang H Y 2006 Phys. Plasmas 13 043503
    [55]
    Lee C A et al 2011 Phys. Plasmas 18 013501
    [56]
    Makabe T and Petrovic Z 2006 Plasma Electronics: Applications in Microelectronic Device Fabrication (New York: Taylor & Francis)
    [57]
    Miyoshi Y, Petrovic Z L and Makabe T 2002 J. Phys. D: Appl.Phys. 35 454
  • Related Articles

    [1]Mingjie ZHOU, Haiyun TAN, Lanjian ZHUGE, Xuemei WU. Tunable topological edge state in plasma photonic crystals[J]. Plasma Science and Technology, 2024, 26(11): 115501. DOI: 10.1088/2058-6272/ad62d5
    [2]Zhicheng WU (吴志成), Mengfei DONG (董梦菲), Weili FAN (范伟丽), Kuangya GAO (高匡雅), Yueqiang LIANG (梁月强), Fucheng LIU (刘富成). Microwave transmittance characteristics in different uniquely designed one-dimensional plasma photonic crystals[J]. Plasma Science and Technology, 2021, 23(6): 64014-064014. DOI: 10.1088/2058-6272/abf6c1
    [3]Qinwen XUE (薛钦文), Xiaohua WANG (王晓华), Chenglin LIU (刘成林), Youwen LIU (刘友文). Pressure-controlled terahertz filter based on 1D photonic crystal with a defective semiconductor[J]. Plasma Science and Technology, 2018, 20(3): 35504-035504. DOI: 10.1088/2058-6272/aa98d8
    [4]WANG Guibin (王桂滨), ZHANG Lin (张林), HE Feng (何锋), OUYANG Jiting (欧阳吉庭). Numerical Study on Microwave Scattering by Various Plasma Objects[J]. Plasma Science and Technology, 2016, 18(8): 791-797. DOI: 10.1088/1009-0630/18/8/01
    [5]ZHANG Kaiming (张开明), SUN Dongsheng (孙东升). The Photonic Band Gaps in the Two-Dimensional Plasma Photonic Crystals with Rhombus Lattice[J]. Plasma Science and Technology, 2016, 18(6): 583-589. DOI: 10.1088/1009-0630/18/6/01
    [6]CHANG Lei (苌磊), LI Yinghong (李应红), WU Yun (吴云), ZHANG Huijie (张辉洁), WANG Weimin (王卫民), SONG Huimin (宋慧敏). Dynamic Control of Defective Gap Mode Through Defect Location[J]. Plasma Science and Technology, 2016, 18(1): 1-5. DOI: 10.1088/1009-0630/18/1/01
    [7]QI Limei (亓丽梅), LI Chao (李超), FANG Guangyou (方广有), GAO Xiang (高翔). The Absorbing Properties of Two-Dimensional Plasma Photonic Crystals[J]. Plasma Science and Technology, 2015, 17(1): 4-9. DOI: 10.1088/1009-0630/17/1/02
    [8]ZHANG Wenbo (张文波), WANG Shenggao (王升高), XU Chuanbo (许传波), XU Kaiwei (徐开伟), WANG Mingyang (王明洋), WANG Jianhua (汪建华), HUANG Zhiliang (黄志良), WANG Chuanxin (王传新). Reduction of Ilmenite Through Microwave Plasma[J]. Plasma Science and Technology, 2013, 15(5): 465-468. DOI: 10.1088/1009-0630/15/5/14
    [9]S. PRASAD, Vivek SINGH, A. K. SINGH. Study on the Reflection Spectra of One Dimensional Plasma Photonic Crystals Having Exponentially Graded Materials[J]. Plasma Science and Technology, 2013, 15(5): 443-447. DOI: 10.1088/1009-0630/15/5/10
    [10]Laxmi Shiveshwari. Some New Band Characteristics in One-Dimensional Plasma Dielectric Photonic Crystals[J]. Plasma Science and Technology, 2011, 13(4): 392-396.
  • Cited by

    Periodical cited type(3)

    1. Wu, Z., Jia, M., Hou, X. et al. Band Gap Characteristics of h-BN Superlattice Plasma Photonic Crystals | [h-BN 型超晶格等离子体光子晶体能带特性研究]. Rengong Jingti Xuebao/Journal of Synthetic Crystals, 2023, 52(2): 252-260.
    2. Fan, W., Liu, C., Gao, K. et al. Reconfigurable plasma photonic crystals from triangular lattice to square lattice in dielectric barrier discharge. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021. DOI:10.1016/j.physleta.2021.127223
    3. Yang, L., Chen, Y., Wu, S. et al. Tunability of the Terahertz Bandgap of One-dimensional Microplasma Photonic Crystals | [一维微等离子体光子晶体的太赫兹带隙特征调控]. Gaodianya Jishu/High Voltage Engineering, 2021, 47(3): 865-875. DOI:10.13336/j.1003-6520.hve.20210094

    Other cited types(0)

Catalog

    Article views PDF downloads Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return