Advanced Search+
Prince ALEX, Suraj Kumar SINHA. Generation scenarios of anodic structures and experimental realization of turbulence in unmagnetized plasma[J]. Plasma Science and Technology, 2020, 22(8): 85402-085402. DOI: 10.1088/2058-6272/ab8b56
Citation: Prince ALEX, Suraj Kumar SINHA. Generation scenarios of anodic structures and experimental realization of turbulence in unmagnetized plasma[J]. Plasma Science and Technology, 2020, 22(8): 85402-085402. DOI: 10.1088/2058-6272/ab8b56

Generation scenarios of anodic structures and experimental realization of turbulence in unmagnetized plasma

Funds: The research work has been partially funded by University Grant Commission (UGC), India under the project F.No.41- 970/2012 (SR) and Department of Science and Technology (DST), India under the project SR/FRT-PS-053/2010.
More Information
  • Received Date: January 11, 2020
  • Revised Date: April 15, 2020
  • Accepted Date: April 19, 2020
  • In the present work, we report development of a DC glow discharge plasma (GDP) set-up to study controlled evolution of anodic structures having distinctive geometry, size and layers, generated in front of a positively biased electrode, submerged in unmagnetized plasma. For such an anodic structure, we have also investigated the condition under which the turbulence is triggered. Characteristic of these structures, generated in front of a positively biased electrode, depends on multiple parameters such as the ratio of anode to cathode size, electrode separation, gas pressure, biasing configuration such as anode bias, cathode bias and grounding schemes. We attempted to classify different anodic structures observed experimentally, as anode glow, fireball, anode spot, double layer and multiple double layers (MDLs) based on its physical characteristics. Among these structures the present investigation is focused on MDLs. The number of layers, observed in MDLs varied from as high as six to as low as zero, by controlling the operating discharge parameters, externally. Diagnostics were carried out using Langmuir probe. The analysis of floating potential fluctuations corresponds to a multiple anodic structure showed emergence of turbulence, at its critical stage, satisfying condition for self-organized criticality (SOC). This was identified with three slopes observed in the power spectrum, resembling the sand-pile model. Though, the GDP is completely different from that of the magnetically confined plasma, the nature of turbulence observed with SOC, is very similar to that observed in the scrape of layer of fusion devices. Therefore, the present investigation could provide new approach to study turbulence of similar nature, under an experimental condition that is free from the complexities of complicated field geometries used in confinement devices.
  • [1]
    Liberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing 2nd edn (New York: Wiley)
    [2]
    Chapman B 1980 Glow Discharge Processes: Sputtering and Plasma Etching (New York: Wiley)
    [3]
    Arumugam S, Alex P and Sinha S K 2017 Phys. Plasmas 24 112106
    [4]
    Arumugam S, Alex P and Sinha S K 2018 Plasma Sci.Technol. 20 025404
    [5]
    Langmuir I 1929 Phys. Rev. 33 954
    [6]
    Rubens S M and Henderson J E 1940 Phys. Rev. 58 446
    [7]
    Chaundy C J F 1954 Br. J. Appl. Phys. 5 255
    [8]
    Emeleus K G 1982 Int. J. Electron. 52 407
    [9]
    Sakakibara T, Kito Y and Miyachi I 1978 Jpn. J. Appl. Phys.18 1325
    [10]
    Park Y S et al 2014 Rev. Sci. Instrum. 85 02A508
    [11]
    Song B, Merlino R L and D’Angelo N 1992 Phys. Scr. 45 391
    [12]
    Gyergyek T, Čerček M, Schrittwieser R and Ionita C 2002 Contrib. Plasma Phys. 42 508
    [13]
    Stenzel R L, Ionita C and Schrittwieser R 2008 Plasma Sources Sci. Technol. 17 035006
    [14]
    Stenzel R L et al 2012 Plasma Sources Sci. Technol. 21 015012
    [15]
    Schrittwieser R W 1993 Double Layers and Other Nonlinear Potential Structures in Plasmas: Fourth Symposium (Singapore: World Scientific) pp 1–501
    [16]
    Conde L and León L 1994 Phys. Plasmas 1 2441
    [17]
    Ioniţă C, Dimitriu D G and Schrittwieser R W 2004 Int. J.Mass Spectrom. 233 343
    [18]
    Dimitriu D G et al 2007 Plasma Phys. Control. Fusion 49 237
    [19]
    Dimitriu D G et al 2013 Plasma Sources Sci. Technol. 22 035007
    [20]
    Alex P et al 2015 Results Phys. 5 235
    [21]
    Alex P, Arumugham S and Sinha S K 2017 Phys. Lett. A 381 3652
    [22]
    Pekarek L 1968 Sov. Phys. Usp. 11 188
    [23]
    Sanduloviciu M, Borcia C and Leu G 1995 Phys. Lett. A 208 136
    [24]
    Temerin M et al 1982 Phys. Rev. Lett. 48 1175
    [25]
    Bailey A III and Hershkowitz N 1988 Geophys. Res. Lett.15 99
    [26]
    Zweben S J et al 2007 Plasma Phys. Control. Fusion 49 S1
    [27]
    Horton W 2012 Turbulent Transport in Magnetized Plasmas (Singapore: World Scientific)
    [28]
    Carter T A 2006 Phys. Plasmas 13 010701
    [29]
    Singh A K and Saxena Y C 1994 Phys. Plasmas 1 2926
    [30]
    Riva F et al 2016 Plasma Phys. Control. Fusion 58 044005
    [31]
    Fredriksen A et al 2003 Phys. Plasmas 10 4335
    [32]
    Barni R et al 2017 Phys. Plasmas 24 032306
    [33]
    Mattoo S K et al 2012 Phys. Rev. Lett. 108 255007
    [34]
    Moon C et al 2010 Rev. Sci. Instrum. 81 053506
    [35]
    Sokolov V and Sen A K 2011 Phys. Rev. Lett. 107 155001
    [36]
    Carreras B A et al 1998 Phys. Plasmas 5 3632
    [37]
    Carreras B A et al 1999 Phys. Rev. Lett. 83 3653
    [38]
    Carreras B A et al 1996 Plasma Phys. Rep. 22 740
    [39]
    Carreras B A et al 1996 Phys. Plasmas 3 2903
    [40]
    Hwa T and Kadar M 1992 Phys. Rev. A 45 7002
    [41]
    Garbet X and Waltz R E 1998 Phys. Plasmas 5 2836
    [42]
    Alex P et al 2017 Phys. Plasmas 24 120701
    [43]
    Alex P et al 2018 Phys. Plasmas 25 053514
    [44]
    Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer)
  • Related Articles

    [1]Mingjie ZHOU, Haiyun TAN, Lanjian ZHUGE, Xuemei WU. Tunable topological edge state in plasma photonic crystals[J]. Plasma Science and Technology, 2024, 26(11): 115501. DOI: 10.1088/2058-6272/ad62d5
    [2]Zhicheng WU (吴志成), Mengfei DONG (董梦菲), Weili FAN (范伟丽), Kuangya GAO (高匡雅), Yueqiang LIANG (梁月强), Fucheng LIU (刘富成). Microwave transmittance characteristics in different uniquely designed one-dimensional plasma photonic crystals[J]. Plasma Science and Technology, 2021, 23(6): 64014-064014. DOI: 10.1088/2058-6272/abf6c1
    [3]Qinwen XUE (薛钦文), Xiaohua WANG (王晓华), Chenglin LIU (刘成林), Youwen LIU (刘友文). Pressure-controlled terahertz filter based on 1D photonic crystal with a defective semiconductor[J]. Plasma Science and Technology, 2018, 20(3): 35504-035504. DOI: 10.1088/2058-6272/aa98d8
    [4]WANG Guibin (王桂滨), ZHANG Lin (张林), HE Feng (何锋), OUYANG Jiting (欧阳吉庭). Numerical Study on Microwave Scattering by Various Plasma Objects[J]. Plasma Science and Technology, 2016, 18(8): 791-797. DOI: 10.1088/1009-0630/18/8/01
    [5]ZHANG Kaiming (张开明), SUN Dongsheng (孙东升). The Photonic Band Gaps in the Two-Dimensional Plasma Photonic Crystals with Rhombus Lattice[J]. Plasma Science and Technology, 2016, 18(6): 583-589. DOI: 10.1088/1009-0630/18/6/01
    [6]CHANG Lei (苌磊), LI Yinghong (李应红), WU Yun (吴云), ZHANG Huijie (张辉洁), WANG Weimin (王卫民), SONG Huimin (宋慧敏). Dynamic Control of Defective Gap Mode Through Defect Location[J]. Plasma Science and Technology, 2016, 18(1): 1-5. DOI: 10.1088/1009-0630/18/1/01
    [7]QI Limei (亓丽梅), LI Chao (李超), FANG Guangyou (方广有), GAO Xiang (高翔). The Absorbing Properties of Two-Dimensional Plasma Photonic Crystals[J]. Plasma Science and Technology, 2015, 17(1): 4-9. DOI: 10.1088/1009-0630/17/1/02
    [8]ZHANG Wenbo (张文波), WANG Shenggao (王升高), XU Chuanbo (许传波), XU Kaiwei (徐开伟), WANG Mingyang (王明洋), WANG Jianhua (汪建华), HUANG Zhiliang (黄志良), WANG Chuanxin (王传新). Reduction of Ilmenite Through Microwave Plasma[J]. Plasma Science and Technology, 2013, 15(5): 465-468. DOI: 10.1088/1009-0630/15/5/14
    [9]S. PRASAD, Vivek SINGH, A. K. SINGH. Study on the Reflection Spectra of One Dimensional Plasma Photonic Crystals Having Exponentially Graded Materials[J]. Plasma Science and Technology, 2013, 15(5): 443-447. DOI: 10.1088/1009-0630/15/5/10
    [10]Laxmi Shiveshwari. Some New Band Characteristics in One-Dimensional Plasma Dielectric Photonic Crystals[J]. Plasma Science and Technology, 2011, 13(4): 392-396.
  • Cited by

    Periodical cited type(3)

    1. Wu, Z., Jia, M., Hou, X. et al. Band Gap Characteristics of h-BN Superlattice Plasma Photonic Crystals | [h-BN 型超晶格等离子体光子晶体能带特性研究]. Rengong Jingti Xuebao/Journal of Synthetic Crystals, 2023, 52(2): 252-260.
    2. Fan, W., Liu, C., Gao, K. et al. Reconfigurable plasma photonic crystals from triangular lattice to square lattice in dielectric barrier discharge. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021. DOI:10.1016/j.physleta.2021.127223
    3. Yang, L., Chen, Y., Wu, S. et al. Tunability of the Terahertz Bandgap of One-dimensional Microplasma Photonic Crystals | [一维微等离子体光子晶体的太赫兹带隙特征调控]. Gaodianya Jishu/High Voltage Engineering, 2021, 47(3): 865-875. DOI:10.13336/j.1003-6520.hve.20210094

    Other cited types(0)

Catalog

    Article views (122) PDF downloads (143) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return