Advanced Search+
Jinyue GENG (耿金越), Yongcai CHEN (陈永财), Surong SUN (孙素蓉), Wendong HUANG (黄文栋), Haixing WANG (王海兴). Numerical simulation of the plasma acceleration process in a magnetically enhanced micro-cathode vacuum arc thruster[J]. Plasma Science and Technology, 2020, 22(9): 94012-094012. DOI: 10.1088/2058-6272/ab9282
Citation: Jinyue GENG (耿金越), Yongcai CHEN (陈永财), Surong SUN (孙素蓉), Wendong HUANG (黄文栋), Haixing WANG (王海兴). Numerical simulation of the plasma acceleration process in a magnetically enhanced micro-cathode vacuum arc thruster[J]. Plasma Science and Technology, 2020, 22(9): 94012-094012. DOI: 10.1088/2058-6272/ab9282

Numerical simulation of the plasma acceleration process in a magnetically enhanced micro-cathode vacuum arc thruster

Funds: This work was supported by National Natural Science Foundation of China (Nos. 11735004, 11575019, and 11702021), National Postdoctoral Program for Innovative Talents (BX20180029), and Defense Industrial Technology Development Program (JCKY2018203B029)
More Information
  • Received Date: January 18, 2020
  • Revised Date: May 09, 2020
  • Accepted Date: May 11, 2020
  • A particle-in-cell simulation is conducted to investigate the plasma acceleration process in a micro-cathode vacuum arc thruster. A coaxial electrode structure thruster with an applied magnetic field configuration is used to investigate the effects of the distribution of the magnetic field on the acceleration process and the mechanism of electrons and ions. The modeling results show that due to the small Larmor radius of electrons, they are magnetized and bound by the magnetic field lines to form a narrow electron channel. Heavy ions with a large Larmor radius take a long time to keep up with the electron movement. The presence of a magnetic field strengthens the charge separation phenomenon. The electric field caused by the charge separation is mainly responsible for the ion acceleration downstream of the computation. The impact of variations in the distribution of the magnetic field on the acceleration of the plasma is also investigated in this study, and it is found that the position of the magnetic coil relative to the thruster exit has an important impact on the acceleration of ions. In order to increase the axial velocity of heavy ions, the design should be considered to reduce the confinement of the magnetic field on the electrons in the downstream divergent part of the applied magnetic field.
  • [1]
    Kolbeck J et al 2019 J. Appl. Phys. 125 220902
    [2]
    Keidar M et al 2015 Plasma Phys. Control. Fusion 57 014005
    [3]
    Keidar M et al 2005 Plasma Sources Sci. Technol. 14 661
    [4]
    Anders A 2008 Cathodic Arcs: From Fractal Spots to Energetic Condensation (New York: Springer)
    [5]
    Boxman R L, Sanders D M and Martin P J 1995 Handbook of Vacuum Arc Science and Technology: Fundamentals and Applications (Park Ridge, NJ: William Andrew Publishing)
    [6]
    Beilis I I et al 1998 J. Appl. Phys. 83 709
    [7]
    Keidar M et al 1996 J. Phys. D: Appl. Phys. 29 1973
    [8]
    Keidar M et al 1997 IEEE Trans. Plasma Sci. 25 580
    [9]
    Keidar M and Schulman M B 2001 IEEE Trans. Plasma Sci.29 684
    [10]
    Zhuang T S et al 2011 Co-axial micro-cathode arc thruster (CA-μCAT) and performance characterization Proc. of the 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit (San Diego, CA) (AIAA)
    [11]
    Zhuang T S et al 2014 J. Propul. Power 30 29
    [12]
    Rysanek F and Burton R 2003 Acceleration mechanisms in a vacuum arc thruster Proc. of the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit (Huntsville, AL,USA) (AIAA)
    [13]
    Longmier B W et al 2011 Plasma Sources Sci. Technol. 20 015007
    [14]
    Merino M and Ahedo E 2016 Phys. Plasmas 23 023506
    [15]
    Yushkov G Y et al 2000 J. Appl. Phys. 88 5618
    [16]
    Anders A 2012 Plasma Sources Sci. Technol. 21 035014
    [17]
    Wang L J et al 2015 J. Appl. Phys. 117 243301
    [18]
    Wang L J et al 2012 Phys. Plasmas 19 013507
    [19]
    Wang L J et al 2006 J. Appl. Phys. 100 113304
    [20]
    Wang L J et al 2012 IEEE Trans. Plasma Sci. 40 2237
    [21]
    Wang L J et al 2019 IEEE Trans. Plasma Sci. 47 3496
    [22]
    Jia S L, Shi Z Q and Wang L J 2014 J. Phys. D: Appl. Phys. 47 403001
    [23]
    Zhuang T S 2013 Micro-cathode arc thruster system for cube satellite PhD Thesis The George Washington University
    [24]
    Anders A and Yushkov G Y 2002 J. Appl. Phys. 91 4824
    [25]
    Anders A, Fukuda K and Yushkov G Y 2005 J. Phys. D: Appl.Phys. 38 1021
    [26]
    Beilis I et al 1997 J. Phys. D: Appl. Phys. 30 119
    [27]
    Zhuang T S et al 2012 Phys. Plasmas 19 063501
    [28]
    Zhuang T S et al 2011 Micro-cathode arc thruster development and characterization Proc. of the 32th Int. Electric Propulsion Conf. (Wiesbaden, Germany) (IEPC)
    [29]
    Brieda L, Zhuang T S and Keidar M 2013 Towards near plume modeling of a micro cathode arc thruster Proc. of the 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit (San Jose, CA) (AIAA)
    [30]
    Brieda L and Keidar M 2015 Numerical studies of microcathode arc thruster plume expansion Proc. of the 30th Int.Symp. on Space Technology and Science, 34th Int. Electric Propulsion Conf. and 6th Nano-satellite Symp. (HyogoKobe, Japan) (IEPC)
    [31]
    Taccogna F et al 2004 Comput. Phys. Commun. 164 160
    [32]
    Taccogna F et al 2005 Phys. Plasmas 12 053502
    [33]
    Taccogna F et al 2005 Phys. Plasmas 12 043502
    [34]
    Taccogna F et al 2008 Plasma Sources Sci. Technol. 17 024003
    [35]
    Lüskow K F et al 2018 Phys. Plasmas 25 013508
    [36]
    Xia Q M et al 2019 Acta Astronaut. 164 69
    [37]
    Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing 2nd edn (Hoboken, NJ: Wiley)
    [38]
    Little J M and Choueiri E Y 2016 Phys. Rev. Lett. 117 225003
    [39]
    Zhuang T S et al 2010 Performance characterization of the micro-cathode arc thruster and propulsion system for space applications Proc. of the 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit (Nashville, TN) (AIAA)
    [40]
    Kutzner J and Miller H C 1989 IEEE Trans. Plasma Sci.17 688
    [41]
    Plyutto A A et al 1965 J. Exp. Theor. Phys. 20 328
    [42]
    Davis W D and Miller H C 1969 J. Appl. Phys. 40 2212
    [43]
    Wang D et al 2020 J. Phys. D: Appl. Phys. 53 035201
    [44]
    Beilis I I 2019 IEEE Trans. Plasma Sci. 47 3412
    [45]
    Beilis I I 2004 Appl. Phys. Lett. 85 2739
    [46]
    Hantzsche E 1991 J. Phys. D: Appl. Phys. 24 1339
    [47]
    Adamovich I V et al 2020 J. Phys. D: Appl. Phys.
  • Related Articles

    [1]Xianhai PANG (庞先海), Zixi LIU (刘紫熹), Shixin XIU (修士新), Dingyu FENG (冯顶瑜). Arc characteristics during the instability stage on transverse magnetic field contacts[J]. Plasma Science and Technology, 2018, 20(9): 95505-095505. DOI: 10.1088/2058-6272/aac50a
    [2]Xianhai PANG (庞先海), Ting WANG (王婷), Shixin XIU (修士新), Junfei YANG (杨俊飞), Hao JING (景皓). Investigation of cathode spot characteristics in vacuum under transverse magnetic field (TMF) contacts[J]. Plasma Science and Technology, 2018, 20(8): 85502-085502. DOI: 10.1088/2058-6272/aab782
    [3]Xin SONG (宋鑫), Qing WANG (王庆), Zeng LIN (蔺增), Puhui ZHANG (张谱辉), Shuhao WANG (王书豪). Control of vacuum arc source cathode spots contraction motion by changing electromagnetic field[J]. Plasma Science and Technology, 2018, 20(2): 25402-025402. DOI: 10.1088/2058-6272/aa8a30
    [4]ZHU Liying(朱立颖), WU Jianwen(武建文), JIANG Yuan(蒋原). Motion and Splitting of Vacuum Arc Column in Transverse Magnetic Field Contacts at Intermediate-Frequency[J]. Plasma Science and Technology, 2014, 16(5): 454-459. DOI: 10.1088/1009-0630/16/5/03
    [5]DUAN Ping(段萍), ZHOU Xinwei(周新维), LIU Yuan(刘媛), CAO Anning(曹安宁), QIN Haijuan(覃海娟), CHEN Long(陈龙), YIN Yan(殷燕). Effects of Magnetic Field and Ion Velocity on SPT Plasma Sheath Characteristics[J]. Plasma Science and Technology, 2014, 16(2): 161-167. DOI: 10.1088/1009-0630/16/2/13
    [6]ZHAO Xiaoling(赵小令), CHEN Shixiu(陈仕修), CHEN Kun(陈堃), CHEN Bokai(陈柏恺). Best Magnetic Condition to Generate Hollow Cathode Glow Plasma in High Vacuum[J]. Plasma Science and Technology, 2014, 16(1): 21-25. DOI: 10.1088/1009-0630/16/1/05
    [7]SHEN Wulin (沈武林), MA Zhibin (马志斌), TAN Bisong (谭必松), WU Jun (吴俊). Ion Heating in an ECR Plasma with a Magnetic Mirror Field[J]. Plasma Science and Technology, 2013, 15(6): 516-520. DOI: 10.1088/1009-0630/15/6/06
    [8]Azusa FUKANO, Akiyoshi HATAYAMA. Electric Potential in Surface Produced Negative Ion Source with Magnetic Field Increasing Toward a Wall[J]. Plasma Science and Technology, 2013, 15(3): 266-270. DOI: 10.1088/1009-0630/15/3/15
    [9]Hiroyuki TOBARI, Masaki TANIGUCHI, Mieko KASHIWAGI, Masayuki DAIRAKU, Naotaka UMEDA, Haruhiko YAMANAKA, Kazuki TSUCHIDA, Jumpei TAKEMOTO, Kazuhiro WATANABE, Takashi INOUE, Keishi SAKAMOTO. Vacuum Insulation and Achievement of 980 keV, 185 A/m2 H- Ion Beam Acceleration at JAEA for the ITER Neutral Beam Injector[J]. Plasma Science and Technology, 2013, 15(2): 179-183. DOI: 10.1088/1009-0630/15/2/21
    [10]BAI Bing (白冰), ZHA Jun (査俊), ZHANG Xiaoning (张晓宁), WANG Cheng (王城), XIA Weidong (夏维东). Simulation of Magnetically Dispersed Arc Plasma[J]. Plasma Science and Technology, 2012, 14(2): 118-121. DOI: 10.1088/1009-0630/14/2/07
  • Cited by

    Periodical cited type(14)

    1. Qi, J., Zhang, Z., Zhang, Z. et al. Plasma plume enhancement of a dual-anode vacuum arc thruster with magnetic nozzle. Plasma Sources Science and Technology, 2024, 33(7): 075015. DOI:10.1088/1361-6595/ad647c
    2. ZHANG, Z., ZHAO, Z., LIU, X. et al. Full lifetime demonstration of a Micro-Cathode-Arc thruster evolution characteristics. Chinese Journal of Aeronautics, 2024, 37(6): 38-49. DOI:10.1016/j.cja.2024.03.043
    3. Xu, Z., Xiong, K., Huang, X. Temperature Field Simulation and Intelligent Control Algorithm in the Process of Flameless Welding of Transmission Line Grounding Device. 2024. DOI:10.1109/AIARS63200.2024.00135
    4. Liu, X.-Y., Zhao, Z.-J., Zhang, Z. et al. Experimental Study on Conductive Film State of Micro-Cathode Arc Thruster | [微阴极电弧推力器导电薄膜状态实验研究]. Tuijin Jishu/Journal of Propulsion Technology, 2023, 44(7): 2210060. DOI:10.13675/j.cnki.tjjs.2210060
    5. Liu, Y.-X., Geng, J.-Y., Zhang, X. et al. Experimental Study on Discharge Characteristics of Plate Electrode in Micro-Cathode Arc Thruster | [微阴极电弧推力器平板电极放电特性实验研究]. Tuijin Jishu/Journal of Propulsion Technology, 2023, 44(7): 2211074. DOI:10.13675/j.cnki.tjjs.2211074
    6. Tang, H.-B., Chen, Z.-Y., Wang, Y.-B. et al. Research Review for Magnetic Nozzle of Electric Propulsion | [电推进磁喷管研究综述]. Tuijin Jishu/Journal of Propulsion Technology, 2023, 44(7): 2210071. DOI:10.13675/j.cnki.tjjs.2210071
    7. Ji, T., Wei, L., Wang, L. et al. Investigation of the physical process inside the crater during the ablation of the cathode material of a micro-cathode arc thruster. Journal of Physics D: Applied Physics, 2023, 56(24): 245201. DOI:10.1088/1361-6463/acc8e3
    8. Yan, H., Geng, J.-Y., Chen, M.-Y. et al. Performance Investigation of High-Total-Impulse Micro-Cathode Arc Thruster | [高总冲微阴极电弧推力器实验研究]. Tuijin Jishu/Journal of Propulsion Technology, 2023, 44(6): 2208104. DOI:10.13675/j.cnki.tjjs.2208104
    9. Yang, Z., Guo, H., Bai, J. et al. Experimental study of a neutralizer-free gridded ion thruster using radio-frequency self-bias effect. Plasma Science and Technology, 2023, 25(4): 045506. DOI:10.1088/2058-6272/aca13f
    10. Gao, Y., Wang, W., Li, Y. et al. The effect of anode axial position on the performance of a miniaturized cylindrical Hall thruster with a cusp-type magnetic field. Plasma Science and Technology, 2022, 24(7): 074002. DOI:10.1088/2058-6272/ac4d1c
    11. Huang, W.-D., Geng, J.-Y., Yan, H. et al. Particle-in-cell simulation of vacuum arc breakdown process of tip-to-plate electrode configuration. Journal of Applied Physics, 2022, 131(10): 103303. DOI:10.1063/5.0079589
    12. Hu, Y., Huang, Z., Cao, Y. et al. Kinetic insights into thrust generation and electron transport in a magnetic nozzle. Plasma Sources Science and Technology, 2021, 30(7): 075006. DOI:10.1088/1361-6595/ac0a48
    13. Wang, Z.-X., Cao, Z.-Y., Li, R. et al. Three-dimensional hybrid simulation of single cathode spot vacuum arc plasma jet under axial magnetic field | [纵磁作用下真空电弧单阴极斑点等离子体射流三维混合模拟]. Wuli Xuebao/Acta Physica Sinica, 2021, 70(5): 055201. DOI:10.7498/aps.70.20201701
    14. ZHANG, W., LIU, W., TIAN, J. et al. Study of the influence of discharge loop parameters on anode side on generation characteristics of metal plasma jet in a pulsed vacuum discharge. Plasma Science and Technology, 2021, 23(6): 064004. DOI:10.1088/2058-6272/abeb5c

    Other cited types(0)

Catalog

    Article views (175) PDF downloads (293) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return