Citation: | Jinyue GENG (耿金越), Yongcai CHEN (陈永财), Surong SUN (孙素蓉), Wendong HUANG (黄文栋), Haixing WANG (王海兴). Numerical simulation of the plasma acceleration process in a magnetically enhanced micro-cathode vacuum arc thruster[J]. Plasma Science and Technology, 2020, 22(9): 94012-094012. DOI: 10.1088/2058-6272/ab9282 |
[1] |
Kolbeck J et al 2019 J. Appl. Phys. 125 220902
|
[2] |
Keidar M et al 2015 Plasma Phys. Control. Fusion 57 014005
|
[3] |
Keidar M et al 2005 Plasma Sources Sci. Technol. 14 661
|
[4] |
Anders A 2008 Cathodic Arcs: From Fractal Spots to Energetic Condensation (New York: Springer)
|
[5] |
Boxman R L, Sanders D M and Martin P J 1995 Handbook of Vacuum Arc Science and Technology: Fundamentals and Applications (Park Ridge, NJ: William Andrew Publishing)
|
[6] |
Beilis I I et al 1998 J. Appl. Phys. 83 709
|
[7] |
Keidar M et al 1996 J. Phys. D: Appl. Phys. 29 1973
|
[8] |
Keidar M et al 1997 IEEE Trans. Plasma Sci. 25 580
|
[9] |
Keidar M and Schulman M B 2001 IEEE Trans. Plasma Sci.29 684
|
[10] |
Zhuang T S et al 2011 Co-axial micro-cathode arc thruster (CA-μCAT) and performance characterization Proc. of the 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit (San Diego, CA) (AIAA)
|
[11] |
Zhuang T S et al 2014 J. Propul. Power 30 29
|
[12] |
Rysanek F and Burton R 2003 Acceleration mechanisms in a vacuum arc thruster Proc. of the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit (Huntsville, AL,USA) (AIAA)
|
[13] |
Longmier B W et al 2011 Plasma Sources Sci. Technol. 20 015007
|
[14] |
Merino M and Ahedo E 2016 Phys. Plasmas 23 023506
|
[15] |
Yushkov G Y et al 2000 J. Appl. Phys. 88 5618
|
[16] |
Anders A 2012 Plasma Sources Sci. Technol. 21 035014
|
[17] |
Wang L J et al 2015 J. Appl. Phys. 117 243301
|
[18] |
Wang L J et al 2012 Phys. Plasmas 19 013507
|
[19] |
Wang L J et al 2006 J. Appl. Phys. 100 113304
|
[20] |
Wang L J et al 2012 IEEE Trans. Plasma Sci. 40 2237
|
[21] |
Wang L J et al 2019 IEEE Trans. Plasma Sci. 47 3496
|
[22] |
Jia S L, Shi Z Q and Wang L J 2014 J. Phys. D: Appl. Phys. 47 403001
|
[23] |
Zhuang T S 2013 Micro-cathode arc thruster system for cube satellite PhD Thesis The George Washington University
|
[24] |
Anders A and Yushkov G Y 2002 J. Appl. Phys. 91 4824
|
[25] |
Anders A, Fukuda K and Yushkov G Y 2005 J. Phys. D: Appl.Phys. 38 1021
|
[26] |
Beilis I et al 1997 J. Phys. D: Appl. Phys. 30 119
|
[27] |
Zhuang T S et al 2012 Phys. Plasmas 19 063501
|
[28] |
Zhuang T S et al 2011 Micro-cathode arc thruster development and characterization Proc. of the 32th Int. Electric Propulsion Conf. (Wiesbaden, Germany) (IEPC)
|
[29] |
Brieda L, Zhuang T S and Keidar M 2013 Towards near plume modeling of a micro cathode arc thruster Proc. of the 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit (San Jose, CA) (AIAA)
|
[30] |
Brieda L and Keidar M 2015 Numerical studies of microcathode arc thruster plume expansion Proc. of the 30th Int.Symp. on Space Technology and Science, 34th Int. Electric Propulsion Conf. and 6th Nano-satellite Symp. (HyogoKobe, Japan) (IEPC)
|
[31] |
Taccogna F et al 2004 Comput. Phys. Commun. 164 160
|
[32] |
Taccogna F et al 2005 Phys. Plasmas 12 053502
|
[33] |
Taccogna F et al 2005 Phys. Plasmas 12 043502
|
[34] |
Taccogna F et al 2008 Plasma Sources Sci. Technol. 17 024003
|
[35] |
Lüskow K F et al 2018 Phys. Plasmas 25 013508
|
[36] |
Xia Q M et al 2019 Acta Astronaut. 164 69
|
[37] |
Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing 2nd edn (Hoboken, NJ: Wiley)
|
[38] |
Little J M and Choueiri E Y 2016 Phys. Rev. Lett. 117 225003
|
[39] |
Zhuang T S et al 2010 Performance characterization of the micro-cathode arc thruster and propulsion system for space applications Proc. of the 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit (Nashville, TN) (AIAA)
|
[40] |
Kutzner J and Miller H C 1989 IEEE Trans. Plasma Sci.17 688
|
[41] |
Plyutto A A et al 1965 J. Exp. Theor. Phys. 20 328
|
[42] |
Davis W D and Miller H C 1969 J. Appl. Phys. 40 2212
|
[43] |
Wang D et al 2020 J. Phys. D: Appl. Phys. 53 035201
|
[44] |
Beilis I I 2019 IEEE Trans. Plasma Sci. 47 3412
|
[45] |
Beilis I I 2004 Appl. Phys. Lett. 85 2739
|
[46] |
Hantzsche E 1991 J. Phys. D: Appl. Phys. 24 1339
|
[47] |
Adamovich I V et al 2020 J. Phys. D: Appl. Phys.
|
[1] | Xianhai PANG (庞先海), Zixi LIU (刘紫熹), Shixin XIU (修士新), Dingyu FENG (冯顶瑜). Arc characteristics during the instability stage on transverse magnetic field contacts[J]. Plasma Science and Technology, 2018, 20(9): 95505-095505. DOI: 10.1088/2058-6272/aac50a |
[2] | Xianhai PANG (庞先海), Ting WANG (王婷), Shixin XIU (修士新), Junfei YANG (杨俊飞), Hao JING (景皓). Investigation of cathode spot characteristics in vacuum under transverse magnetic field (TMF) contacts[J]. Plasma Science and Technology, 2018, 20(8): 85502-085502. DOI: 10.1088/2058-6272/aab782 |
[3] | Xin SONG (宋鑫), Qing WANG (王庆), Zeng LIN (蔺增), Puhui ZHANG (张谱辉), Shuhao WANG (王书豪). Control of vacuum arc source cathode spots contraction motion by changing electromagnetic field[J]. Plasma Science and Technology, 2018, 20(2): 25402-025402. DOI: 10.1088/2058-6272/aa8a30 |
[4] | ZHU Liying(朱立颖), WU Jianwen(武建文), JIANG Yuan(蒋原). Motion and Splitting of Vacuum Arc Column in Transverse Magnetic Field Contacts at Intermediate-Frequency[J]. Plasma Science and Technology, 2014, 16(5): 454-459. DOI: 10.1088/1009-0630/16/5/03 |
[5] | DUAN Ping(段萍), ZHOU Xinwei(周新维), LIU Yuan(刘媛), CAO Anning(曹安宁), QIN Haijuan(覃海娟), CHEN Long(陈龙), YIN Yan(殷燕). Effects of Magnetic Field and Ion Velocity on SPT Plasma Sheath Characteristics[J]. Plasma Science and Technology, 2014, 16(2): 161-167. DOI: 10.1088/1009-0630/16/2/13 |
[6] | ZHAO Xiaoling(赵小令), CHEN Shixiu(陈仕修), CHEN Kun(陈堃), CHEN Bokai(陈柏恺). Best Magnetic Condition to Generate Hollow Cathode Glow Plasma in High Vacuum[J]. Plasma Science and Technology, 2014, 16(1): 21-25. DOI: 10.1088/1009-0630/16/1/05 |
[7] | SHEN Wulin (沈武林), MA Zhibin (马志斌), TAN Bisong (谭必松), WU Jun (吴俊). Ion Heating in an ECR Plasma with a Magnetic Mirror Field[J]. Plasma Science and Technology, 2013, 15(6): 516-520. DOI: 10.1088/1009-0630/15/6/06 |
[8] | Azusa FUKANO, Akiyoshi HATAYAMA. Electric Potential in Surface Produced Negative Ion Source with Magnetic Field Increasing Toward a Wall[J]. Plasma Science and Technology, 2013, 15(3): 266-270. DOI: 10.1088/1009-0630/15/3/15 |
[9] | Hiroyuki TOBARI, Masaki TANIGUCHI, Mieko KASHIWAGI, Masayuki DAIRAKU, Naotaka UMEDA, Haruhiko YAMANAKA, Kazuki TSUCHIDA, Jumpei TAKEMOTO, Kazuhiro WATANABE, Takashi INOUE, Keishi SAKAMOTO. Vacuum Insulation and Achievement of 980 keV, 185 A/m2 H- Ion Beam Acceleration at JAEA for the ITER Neutral Beam Injector[J]. Plasma Science and Technology, 2013, 15(2): 179-183. DOI: 10.1088/1009-0630/15/2/21 |
[10] | BAI Bing (白冰), ZHA Jun (査俊), ZHANG Xiaoning (张晓宁), WANG Cheng (王城), XIA Weidong (夏维东). Simulation of Magnetically Dispersed Arc Plasma[J]. Plasma Science and Technology, 2012, 14(2): 118-121. DOI: 10.1088/1009-0630/14/2/07 |
1. | Qi, J., Zhang, Z., Zhang, Z. et al. Plasma plume enhancement of a dual-anode vacuum arc thruster with magnetic nozzle. Plasma Sources Science and Technology, 2024, 33(7): 075015. DOI:10.1088/1361-6595/ad647c | |
2. | ZHANG, Z., ZHAO, Z., LIU, X. et al. Full lifetime demonstration of a Micro-Cathode-Arc thruster evolution characteristics. Chinese Journal of Aeronautics, 2024, 37(6): 38-49. DOI:10.1016/j.cja.2024.03.043 | |
3. | Xu, Z., Xiong, K., Huang, X. Temperature Field Simulation and Intelligent Control Algorithm in the Process of Flameless Welding of Transmission Line Grounding Device. 2024. DOI:10.1109/AIARS63200.2024.00135 | |
4. | Liu, X.-Y., Zhao, Z.-J., Zhang, Z. et al. Experimental Study on Conductive Film State of Micro-Cathode Arc Thruster | [微阴极电弧推力器导电薄膜状态实验研究]. Tuijin Jishu/Journal of Propulsion Technology, 2023, 44(7): 2210060. DOI:10.13675/j.cnki.tjjs.2210060 | |
5. | Liu, Y.-X., Geng, J.-Y., Zhang, X. et al. Experimental Study on Discharge Characteristics of Plate Electrode in Micro-Cathode Arc Thruster | [微阴极电弧推力器平板电极放电特性实验研究]. Tuijin Jishu/Journal of Propulsion Technology, 2023, 44(7): 2211074. DOI:10.13675/j.cnki.tjjs.2211074 | |
6. | Tang, H.-B., Chen, Z.-Y., Wang, Y.-B. et al. Research Review for Magnetic Nozzle of Electric Propulsion | [电推进磁喷管研究综述]. Tuijin Jishu/Journal of Propulsion Technology, 2023, 44(7): 2210071. DOI:10.13675/j.cnki.tjjs.2210071 | |
7. | Ji, T., Wei, L., Wang, L. et al. Investigation of the physical process inside the crater during the ablation of the cathode material of a micro-cathode arc thruster. Journal of Physics D: Applied Physics, 2023, 56(24): 245201. DOI:10.1088/1361-6463/acc8e3 | |
8. | Yan, H., Geng, J.-Y., Chen, M.-Y. et al. Performance Investigation of High-Total-Impulse Micro-Cathode Arc Thruster | [高总冲微阴极电弧推力器实验研究]. Tuijin Jishu/Journal of Propulsion Technology, 2023, 44(6): 2208104. DOI:10.13675/j.cnki.tjjs.2208104 | |
9. | Yang, Z., Guo, H., Bai, J. et al. Experimental study of a neutralizer-free gridded ion thruster using radio-frequency self-bias effect. Plasma Science and Technology, 2023, 25(4): 045506. DOI:10.1088/2058-6272/aca13f | |
10. | Gao, Y., Wang, W., Li, Y. et al. The effect of anode axial position on the performance of a miniaturized cylindrical Hall thruster with a cusp-type magnetic field. Plasma Science and Technology, 2022, 24(7): 074002. DOI:10.1088/2058-6272/ac4d1c | |
11. | Huang, W.-D., Geng, J.-Y., Yan, H. et al. Particle-in-cell simulation of vacuum arc breakdown process of tip-to-plate electrode configuration. Journal of Applied Physics, 2022, 131(10): 103303. DOI:10.1063/5.0079589 | |
12. | Hu, Y., Huang, Z., Cao, Y. et al. Kinetic insights into thrust generation and electron transport in a magnetic nozzle. Plasma Sources Science and Technology, 2021, 30(7): 075006. DOI:10.1088/1361-6595/ac0a48 | |
13. | Wang, Z.-X., Cao, Z.-Y., Li, R. et al. Three-dimensional hybrid simulation of single cathode spot vacuum arc plasma jet under axial magnetic field | [纵磁作用下真空电弧单阴极斑点等离子体射流三维混合模拟]. Wuli Xuebao/Acta Physica Sinica, 2021, 70(5): 055201. DOI:10.7498/aps.70.20201701 | |
14. | ZHANG, W., LIU, W., TIAN, J. et al. Study of the influence of discharge loop parameters on anode side on generation characteristics of metal plasma jet in a pulsed vacuum discharge. Plasma Science and Technology, 2021, 23(6): 064004. DOI:10.1088/2058-6272/abeb5c |