Advanced Search+
Xin SONG (宋鑫), Qing WANG (王庆), Zeng LIN (蔺增), Puhui ZHANG (张谱辉), Shuhao WANG (王书豪). Control of vacuum arc source cathode spots contraction motion by changing electromagnetic field[J]. Plasma Science and Technology, 2018, 20(2): 25402-025402. DOI: 10.1088/2058-6272/aa8a30
Citation: Xin SONG (宋鑫), Qing WANG (王庆), Zeng LIN (蔺增), Puhui ZHANG (张谱辉), Shuhao WANG (王书豪). Control of vacuum arc source cathode spots contraction motion by changing electromagnetic field[J]. Plasma Science and Technology, 2018, 20(2): 25402-025402. DOI: 10.1088/2058-6272/aa8a30

Control of vacuum arc source cathode spots contraction motion by changing electromagnetic field

More Information
  • Received Date: May 25, 2017
  • This paper investigates the magnetic field component impact on cathode spots motion trajectory and the mechanism of periodic contraction. Electromagnetic coils and permanent magnets were installed at the different sides of cathode surface, the photographs of cathode spots motion trajectory were captured by a camera. Increasing the number of magnets and decreasing the distance between magnets and cathode both lead to enhancing cathode spots motion velocity. Radii of cathode spots trajectory decrease gradually with the increasing of electromagnetic coil’s current, from 40 mm at 0 A to 10 mm at 2.7 A. Parallel magnetic field component intensity influence the speed of cathode spots rotate motion, and perpendicular magnetic field component drives spots drift in the radial direction. Cathode spot’s radial drift is controlled by changing the location of the ‘zero line’ where perpendicular magnetic component shifts direction and the radius of cathode spots trajectory almost equal to ‘zero line’.
  • [1]
    Keidar M et al 1996 Surf. Coat. Technol. 86-87 415
    [2]
    Huang M D et al 2003 Surf. Coat. Technol. 176 109
    [3]
    Ellrodt M and Kühn M 1996 Contrib. Plasma Phys. 36 687
    [4]
    Beilis I I 2016 Phys. Plasmas 23 093501
    [5]
    Rakhovskii V I 1976 IEEE Trans. Plasma Sci. 4 81
    [6]
    Li L H et al 2013 Vacuum 91 20
    [7]
    Boxman R L et al 1996 Surf. Coat. Technol. 86-87 243
    [8]
    Wang G F et al 2000 Surf. Coat. Technol. 128-129 470
    [9]
    Ryabchikov A I et al 2016 Surf. Coat. Technol. 306 251
    [10]
    Sivin D O et al 2014 Appl. Surf. Sci. 310 120
    [11]
    Takikawa H et al 2000 Thin Solid Films 377-378 74
    [12]
    Fei C et al 2011 Appl. Surf. Sci. 258 1819
    [13]
    Naddaf M et al 2016 Nucl. Instrum. Methods Phys. Res. B 381 90
    [14]
    Lang W C et al 2010 Vacuum 84 1111
    [15]
    Coll B F and Sanders D M 1996 Surf. Coat. Technol. 81 42
    [16]
    Stepanov I B et al 2016 Surf. Coat. Technol. 306 21
    [17]
    Jüttner B and Kleberg I 2000 J. Phys. D: Appl. Phys. 33 2025
    [18]
    Jüttner B 2001 J. Phys. D: Appl. Phys. 34 R103
    [19]
    Swift P D 1996 J. Phys. D: Appl. Phys. 29 2025
  • Related Articles

    [1]Haojie MA, Huasheng XIE, Bo LI. Simulation of ion cyclotron wave heating in the EXL-50U spherical tokamak based on dispersion relations[J]. Plasma Science and Technology, 2024, 26(2): 025105. DOI: 10.1088/2058-6272/ad0d53
    [2]Suyun ZHOU (周素云), Hui CHEN (陈辉), Yanfang LI (李艳芳). Breaking of a Langmuir wave in cold electron–positron–ion plasmas[J]. Plasma Science and Technology, 2018, 20(1): 14008-014008. DOI: 10.1088/2058-6272/aa8cc0
    [3]Jixiong XIAO (肖集雄), Zhong ZENG (曾中), Zhijiang WANG (王之江), Donghui XIA (夏冬辉), Changhai LIU (刘昌海). Electromagnetic dispersion characteristics of a high energy electron beam guided with an ion channel[J]. Plasma Science and Technology, 2017, 19(2): 24004-024004. DOI: 10.1088/2058-6272/19/2/024004
    [4]ZHU Jun (祝俊). Dispersion Relation of Linear Waves in Quantum Magnetoplasmas[J]. Plasma Science and Technology, 2016, 18(7): 703-707. DOI: 10.1088/1009-0630/18/7/01
    [5]XIE Huasheng (谢华生), XIAO Yong (肖湧). PDRK: A General Kinetic Dispersion Relation Solver for Magnetized Plasma[J]. Plasma Science and Technology, 2016, 18(2): 97-107. DOI: 10.1088/1009-0630/18/2/01
    [6]ZHOU Qinghua(周庆华), YANG Chang(杨昶), HE Yihua(贺艺华), LIU Si(刘斯), ZHOU Xiaoping(周晓萍), TANG Lijun(唐立军), XIAO Fuliang(肖伏良). Ray Tracing Study of Electromagnetic Ion Cyclotron Waves Associated with Bi-Ion Frequencies[J]. Plasma Science and Technology, 2014, 16(6): 577-581. DOI: 10.1088/1009-0630/16/6/07
    [7]XIAO Jixiong(肖集雄), CHEN Shixiu(陈仕修), TIAN Wei(田微), CHEN Kun(陈堃). Influence of the Beam Self-Fields on the Dispersion Characteristics of EM Waves in a Dielectric Waveguide Filled with Plasma[J]. Plasma Science and Technology, 2014, 16(1): 1-5. DOI: 10.1088/1009-0630/16/1/01
    [8]CHEN Ling (陈玲), WU Dejin (吴德金). Dispersion Equation of Low-Frequency Waves Driven by Temperature Anisotropy[J]. Plasma Science and Technology, 2012, 14(10): 880-885. DOI: 10.1088/1009-0630/14/10/05
    [9]Hiroe IGAMI, Hiroshi IDEI, Shin KUBO, Yasuo YOSHIMURA., Takashi SHIMOZUMA, Hiromi TAKAHASHI. Measurement of the electron Bernstein wave emission with one of the power transmission lines for ECH in LHD[J]. Plasma Science and Technology, 2011, 13(4): 405-409.
    [10]ZHU Xueguang(朱学光). Influence of the Phase of the Antenna Current Standing Wave on the Power Flux in Ion Cyclotron Heating[J]. Plasma Science and Technology, 2010, 12(5): 543-546.

Catalog

    Article views (238) PDF downloads (859) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return