Citation: | Haojie MA, Huasheng XIE, Bo LI. Simulation of ion cyclotron wave heating in the EXL-50U spherical tokamak based on dispersion relations[J]. Plasma Science and Technology, 2024, 26(2): 025105. DOI: 10.1088/2058-6272/ad0d53 |
This study investigates the single-pass absorption (SPA) of ion cyclotron range of frequency (ICRF) heating in hydrogen plasma of the EXL-50U spherical tokamak, which is an upgraded EXL-50 device with a central solenoid and a stronger magnetic field. The reliability of the kinetic dispersion equation is confirmed by the one-dimensional full-wave code, and the applicability of Porkolab's simplified theoretical SPA model is discussed based on the kinetic dispersion equation. Simulations are conducted to investigate the heating effects of the fundamental and second harmonic frequencies. The results indicate that with the design parameters of the EXL-50U device, the SPA for second harmonic heating is 63%, while the SPA for fundamental heating is 13%. Additionally, the optimal injection frequencies are 23 MHz at 0.9 T and 31 MHz at 1.2 T. The wave vector of the antenna parallel to the magnetic field, with a value of k‖, falls within the optimal heating region. Simulations reveal that the ICRF heating system can play an important role in the ion heating of the EXL-50U.
[1] |
Peng Y K M 2000 Phys. Plasmas 7 1681 doi: 10.1063/1.874048
|
[2] |
Sabbagh S A et al 2013 Nucl. Fusion 53 104007 doi: 10.1088/0029-5515/53/10/104007
|
[3] |
Chapman I T et al 2015 Nucl. Fusion 55 104008 doi: 10.1088/0029-5515/55/10/104008
|
[4] |
Ishida A, Peng Y K M and Liu W J 2021 Phys. Plasmas 28 032503 doi: 10.1063/5.0027718
|
[5] |
Shi Y J et al 2022 Nucl. Fusion 62 086047 doi: 10.1088/1741-4326/ac71b6
|
[6] |
Xie H S et al 2022 ENN Roadmap for Proton-Boron Fusion Energy Based on Spherical Torus In: The 21st International Spherical Torus Workshop Beijing: Tsinghua University 2022.
|
[7] |
Takase Y et al 2022 Nucl. Fusion 62 042011 doi: 10.1088/1741-4326/ac29cf
|
[8] |
Shcherbinin O N et al 2006 Nucl. Fusion 46 S592 doi: 10.1088/0029-5515/46/8/S04
|
[9] |
Schneider M et al 2017 EPJ Web of Conf. 157 03046 doi: 10.1051/epjconf/201715703046
|
[10] |
Kazakov Y O et al 2021 Phys. Plasmas 28 020501 doi: 10.1063/5.0021818
|
[11] |
Zhu G H et al 2023 Nucl. Fusion 63 056015 doi: 10.1088/1741-4326/acc4db
|
[12] |
Zhang X J et al 2022 Nucl. Fusion 62 086038 doi: 10.1088/1741-4326/ac7657
|
[13] |
Zhang J H et al 2023 Nucl. Fusion 63 046012 doi: 10.1088/1741-4326/acb607
|
[14] |
Porkolab M 1994 AIP Conf. Proc. 314 99 doi: 10.1063/1.46754
|
[15] |
Porkolab M et al 1998 Plasma Phys. Control. Fusion 40 A35 doi: 10.1088/0741-3335/40/8A/004
|
[16] |
Pinsker R I et al 2006 Nucl. Fusion 46 S416 doi: 10.1088/0029-5515/46/7/S04
|
[17] |
Lu L F et al 2023 Nucl. Fusion 63 066023 doi: 10.1088/1741-4326/acc4dc
|
[18] |
Lin Y, Wright J C and Wukitch S J 2020 J. Plasma Phys. 86 865860506 doi: 10.1017/S0022377820001269
|
[19] |
Lin Y et al 2020 AIP Conf. Proc. 2254 030003
|
[20] |
Xie H S, Ma H J and Bai Y K 2021 arXiv 2111.05669
|
[21] |
Van Eester D et al 2012 Plasma Phys. Control. Fusion 54 074009 doi: 10.1088/0741-3335/54/7/074009
|
[22] |
Mayoral M L et al 2006 Nucl. Fusion 46 S550 doi: 10.1088/0029-5515/46/7/S14
|
[23] |
Stix T H 1975 Nucl. Fusion 15 737 doi: 10.1088/0029-5515/15/5/003
|
[24] |
Kazakov Y O and Fülöp T 2013 Phys. Rev. Lett. 111 125002 doi: 10.1103/PhysRevLett.111.125002
|
[25] |
Sauter O and Vaclavik J 1994 Comput. Phys. Commun. 84 226 doi: 10.1016/0010-4655(94)90213-5
|
[26] |
Zhang J H et al 2022 Nucl. Fusion 62 076032 doi: 10.1088/1741-4326/ac5451
|
[27] |
Jaeger E F et al 2002 Phys. Plasmas 9 1873 doi: 10.1063/1.1455001
|
[28] |
Jaun A et al 1998 Phys. Plasmas 5 3801 doi: 10.1063/1.873064
|
[29] |
Cai J Q et al 2022 Fusion Sci. Technol. 78 149 doi: 10.1080/15361055.2021.1964309
|
[30] |
Xie H S et al 2022 Comput. Phys. Commun. 276 108363 doi: 10.1016/j.cpc.2022.108363
|
[31] |
Ma H J et al 2023 Phys. Plasmas 30 042502 doi: 10.1063/5.0133133
|
[32] |
Onchi T et al 2021 Phys. Plasmas 28 022505 doi: 10.1063/5.0031357
|
[1] | Qiuyun WANG (王秋云), Hongxia QI (齐洪霞), Xiangyu ZENG (曾祥榆), Anmin CHEN (陈安民), Xun GAO (高勋), Mingxing JIN (金明星). Time-resolved spectroscopy of collinear femtosecond and nanosecond dual-pulse laser-induced Cu plasmas[J]. Plasma Science and Technology, 2021, 23(11): 115504. DOI: 10.1088/2058-6272/ac183b |
[2] | Qiuyun WANG (王秋云), Anmin CHEN (陈安民), Wanpeng XU (徐万鹏), Dan ZHANG (张丹), Ying WANG (王莹), Suyu LI (李苏宇), Yuanfei JIANG (姜远飞), Mingxing JIN (金明星). Time-resolved spectroscopy of femtosecond laser-induced Cu plasma with spark discharge[J]. Plasma Science and Technology, 2019, 21(6): 65504-065504. DOI: 10.1088/2058-6272/ab0fa6 |
[3] | Victor TARASENKO, Dmitry BELOPLOTOV, Mikhail LOMAEV, Dmitry SOROKIN. E-beam generation in discharges initiated by voltage pulses with a rise time of 200 ns at an air pressure of 12.5–100 kPa[J]. Plasma Science and Technology, 2019, 21(4): 44007-044007. |
[4] | Xiaoyan BAI (白小燕), Chen CHEN (陈晨), Hong LI (李弘), Wandong LIU (刘万东). Investigations on the time evolution of the plasma density in argon electron-beam plasma at intermediate pressure[J]. Plasma Science and Technology, 2017, 19(3): 35003-035003. DOI: 10.1088/2058-6272/19/3/035003 |
[5] | WANG Xiaolong (王晓龙), TAN Zhenyu (谭震宇), PAN Jie (潘杰), CHEN Xinxian (陈歆羡). Effects of Oxygen Concentration on Pulsed Dielectric Barrier Discharge in Helium-Oxygen Mixture at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(8): 837-843. DOI: 10.1088/1009-0630/18/8/08 |
[6] | F. PETERS, J. HIRSCHBERG, N. MERTENS, S. WIENEKE, W. VI¨OL. Comparison of Nitric Oxide Concentrations in μs-and ns-Atmospheric Pressure Plasmas by UV Absorption Spectroscopy[J]. Plasma Science and Technology, 2016, 18(4): 406-411. DOI: 10.1088/1009-0630/18/4/13 |
[7] | LIU Yuanye (刘远野), HE Feng (何锋), ZHAO Xiaofei (赵晓菲), OUYANG Jiting (欧阳吉庭). Evolution of Striation in Pulsed Glow Discharges[J]. Plasma Science and Technology, 2016, 18(1): 30-34. DOI: 10.1088/1009-0630/18/1/06 |
[8] | WU Xingwei(吴兴伟), LI Cong(李聪), ZHANG Chenfei(张辰飞), DING Hongbin(丁洪斌). High-Sensitivity In-Situ Diagnosis of NO 2 Production and Removal in DBD Using Cavity Ring-Down Spectroscopy[J]. Plasma Science and Technology, 2014, 16(2): 142-148. DOI: 10.1088/1009-0630/16/2/10 |
[9] | GAO Jin (高进), GU Pingdao (顾平道), YUAN Li (袁里), ZHONG Fangchuan (钟方川). Degradation of Dye Wastewater by ns-Pulse DBD Plasma[J]. Plasma Science and Technology, 2013, 15(9): 928-934. DOI: 10.1088/1009-0630/15/9/18 |
[10] | HU Hui (胡辉), CHEN Weipeng(陈卫鹏), Zhang Jin-li (张锦丽), LU Xi (陆僖), HE Junjia(何俊佳). Influence of plasma temperature on the concentration of NO produced by pulsed arc discharge[J]. Plasma Science and Technology, 2012, 14(3): 257-262. DOI: 10.1088/1009-0630/14/3/13 |