Advanced Search+
Junmyung LEE, Yunho NAM, Jongchan LEE, Hyun Woo LEE, Kwang-Ho KWON. Etching characteristics of thin SiON films using a liquefied perfluorocarbon precursor of C6F12O with a low global warming potential[J]. Plasma Science and Technology, 2020, 22(10): 105505. DOI: 10.1088/2058-6272/ab9b5a
Citation: Junmyung LEE, Yunho NAM, Jongchan LEE, Hyun Woo LEE, Kwang-Ho KWON. Etching characteristics of thin SiON films using a liquefied perfluorocarbon precursor of C6F12O with a low global warming potential[J]. Plasma Science and Technology, 2020, 22(10): 105505. DOI: 10.1088/2058-6272/ab9b5a

Etching characteristics of thin SiON films using a liquefied perfluorocarbon precursor of C6F12O with a low global warming potential

Funds: This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20172010105910).
More Information
  • Received Date: February 27, 2020
  • Revised Date: June 08, 2020
  • Accepted Date: June 09, 2020
  • Perfluorocarbon gas is widely used in the semiconductor industry. However, perfluorocarbon has a negative effect on the global environment owing to its high global warming potential (GWP) value. An alternative solution is essential. Therefore, we evaluated the possibility of replacing conventional perfluorocarbon etching gases such as CHF3 with C6F12O, which has a low GWP and is in a liquid state at room temperature. In this study, silicon oxynitride (SiON) films were plasma-etched using inductively coupled CF4 +C6F12O+O2 mixed plasmas. Subsequently, the etching characteristics of the film, such as etching rate, etching profile, selectivity over Si, and photoresist, were investigated. A double Langmuir probe was used and optical emission spectroscopy was performed for plasma diagnostics. In addition, a contact angle goniometer and x-ray photoelectron spectroscope were used to confirm the change in the surface properties of the etched SiON film surface. Consequently, the etching characteristics of the C6F12O mixed plasma exhibited a lower etching rate, higher SiON/Si selectivity, lower plasma damage, and more vertical etched profiles than the conventional CHF3 mixed plasma. In addition, the C6F12O gas can be recovered in the liquid state, thereby decreasing global warming. These results confirmed that the C6F12O precursor can sufficiently replace the conventional etching gas.
  • [1]
    Kim S et al 2016 J. Nanosci. Nanotechnol. 16 5143
    [2]
    Chiles J et al 2015 Appl. Phys. Lett. 106 111110
    [3]
    Sirard S et al 2016 Interactions between plasma and block copolymers used in directed self-assembly patterning Proc.SPIE 9782 97820K
    [4]
    Kal S et al 2017 Dry-plasma-free chemical etch technique for variability reduction in multi-patterning (Conference Presentation) Proc. SPIE 10149 101490P
    [5]
    Grigaliūnas V et al 2017 Appl. Surf. Sci. 393 287
    [6]
    Donnelly V M and Kornblit A 2013 J. Vac. Sci. Technol. A 31 050825
    [7]
    Frankwicz P, Gardner L and Moutinho T 2012 ECS Trans.41 1
    [8]
    Bai B, An J J and Sawin H H 2006 Appl. Phys. Lett. 88 101504
    [9]
    Yu S J and Chang M B 2001 Plasma Chem. Plasma Process.21 311
    [10]
    Donnelly V M et al 1984 J. Appl. Phys. 55 242
    [11]
    Ding J et al 1993 J. Vac. Sci. Technol. A 11 1283
    [12]
    Schaepkens M et al 1999 J. Vac. Sci. Technol. A 17 26
    [13]
    Hayashi H, Kurihara K and Sekine M 1996 Jpn. J. Appl. Phys.35 2488
    [14]
    Lo S F 2010 Technol. Soc. 32 249
    [15]
    Park H W, Cha W B and Uhm S 2018 Appl. Chem. Eng. 29 10
    [16]
    Yonemitsu K, Nakayama K and Sato H 1986 J. Phys. F: Met.Phys. 16 1625
    [17]
    Sekiya A and Misaki S 2000 J. Fluorine Chem. 101 215
    [18]
    Krishnan N et al 2003 Alternatives to reduce perfluorinated compound (PFC) emissions from semiconductor dielectric etch processes: meeting environmental commitments while minimizing costs Proc. 2003 IEEE Int. Symp. on Electronics and the Environment (Boston, MA, USA) (Piscataway, NJ:IEEE)1924
    [19]
    Tsai W T, Chen H P and Hsien W Y 2002 J. Loss Prev.Process Ind. 15 65
    [20]
    Soda E et al 2009 J. Vac. Sci. Technol. B 27 649
    [21]
    Li X et al 2002 J. Vac. Sci. Technol. A 20 2052
    [22]
    www.chemicalbook.com/ChemicalProductProperty_EN_CB2238274.htm
    [23]
    Zhang X X et al 2017 Energies 10 1170
    [24]
    Thorp N and Scott R L 1956 J. Phys. Chem. 60 670
    [25]
    Diefenbacher A and Türk M 2001 Fluid Phase Equilib.182 121
    [26]
    Uchii T, Suzuki K and Shiiki M 2006 System and method for gas recycling incorporating gas-insulated electric device US Patent No. 7029519 Washington, DC US Patent and Trademark Office
    [27]
    Chen M J et al 2001 Instability trade-off of inter-layer or inter-metal dielectrics formation with low-k dielectrics on active and field device’s characteristics Proc. 2001 6th Int. Symp.on Plasma-and Process-Induced Damage Monterey (California, USA) (Piscataway, NJ: IEEE) 12–5
    [28]
    Jang S M, Fu C Y and Chiu Y H 2001 Method to reduce silicon oxynitride etch rate in a silicon oxide dry etch US Patent No. 6297162 Washington, DC US Patent and Trademark Office
    [29]
    Lee B J et al 2019 Plasma Chem. Plasma Process. 39 339
    [30]
    Lee J et al 2019 Thin Solid Films 669 227
    [31]
    Lee B J et al 2019 Plasma Chem. Plasma Process. 39 325
    [32]
    Kim Y et al 2012 J. Vac. Sci. Technol. A 30 031601
    [33]
    Johnson E O and Malter L 1950 Phy. Rev. 80 358
    [34]
    Sugawara M 1998 Plasma Etching: Fundamentals and Applications (Oxford: Oxford University Press)
    [35]
    Laffosse E et al 2005 J. Electron. Mater. 34 740
    [36]
    Ok C W and Hahn Y B 2006 Stud. Surf. Sci. Catal. 159 381
    [37]
    Park J S et al 2003 J. Vac. Sci. Technol. B 21 800
    [38]
    Lee J et al 2016 Jpn. J. Appl. Phys. 55 106201
    [39]
    Lee J et al 2019 Plasma Chem. Plasma Process. 39 1127
    [40]
    Lee J et al 2017 Plasma Chem. Plasma Process. 37 489
    [41]
    Lee J et al 2018 Vacuum 148 214
    [42]
    Oehrlein G S et al 1994 J. Vac. Sci. Technol. A 12 323
    [43]
    Ko Y C, Ratner B D and Hoffman A S 1981 J. Colloid Interface Sci. 82 25
    [44]
    Fowkes F M, McCarthy D C and Mostafa M A 1980 J. Colloid Interface Sci. 78 200
    [45]
    Rangel E C et al 2003 Surf. Interface Anal. 35 179
  • Related Articles

    [1]Jingyun ZHANG, Min ZHU, Chaohai ZHANG. Dynamic of mode transition in air surface micro-discharge plasma: reactive species in confined space[J]. Plasma Science and Technology, 2025, 27(1): 015402. DOI: 10.1088/2058-6272/ad862c
    [2]Shilin SONG, Yuyue HUANG, Yansheng DU, Sisi XIAO, Song HAN, Kun HU, Huihui ZHANG, Huijuan WANG, Chundu WU, Qiong A. Oxidation of ciprofloxacin by the synergistic effect of DBD plasma and persulfate: reactive species and influencing factors analysis[J]. Plasma Science and Technology, 2023, 25(2): 025505. DOI: 10.1088/2058-6272/ac8dd4
    [3]Yang CAO (曹洋), Guangzhou QU (屈广周), Tengfei LI (李腾飞), Nan JIANG (姜楠), Tiecheng WANG (王铁成). Review on reactive species in water treatment using electrical discharge plasma: formation, measurement, mechanisms and mass transfer[J]. Plasma Science and Technology, 2018, 20(10): 103001. DOI: 10.1088/2058-6272/aacff4
    [4]Rahul NAVIK, Sameera SHAFI, Md Miskatul ALAM, Md Amjad FAROOQ, Lina LIN (林丽娜), Yingjie CAI (蔡映杰). Influence of dielectric barrier discharge treatment on mechanical and dyeing properties of wool[J]. Plasma Science and Technology, 2018, 20(6): 65504-065504. DOI: 10.1088/2058-6272/aaaadd
    [5]Zelong ZHANG (张泽龙), Jie SHEN (沈洁), Cheng CHENG (程诚), Zimu XU (许子牧), Weidong XIA (夏维东). Generation of reactive species in atmospheric pressure dielectric barrier discharge with liquid water[J]. Plasma Science and Technology, 2018, 20(4): 44009-044009. DOI: 10.1088/2058-6272/aaa437
    [6]Xuechen LI (李雪辰), Biao WANG (王彪), Pengying JIA (贾鹏英), Linwei YANG (杨林伟), Yaru LI (李亚茹), Jingdi CHU (楚婧娣). Three modes of a direct-current plasma jet operated underwater to degrade methylene blue[J]. Plasma Science and Technology, 2017, 19(11): 115505. DOI: 10.1088/2058-6272/aa86a6
    [7]Qingsong GAO (高青松), Yongjun LIU (刘永军), Bing SUN (孙冰). Characteristics of gas-liquid diaphragm discharge and its application on decolorization of brilliant red B in aqueous solution[J]. Plasma Science and Technology, 2017, 19(11): 115404. DOI: 10.1088/2058-6272/aa8593
    [8]Feng LIU (刘峰), Bo ZHANG (张波), Zhi FANG (方志), Wenchun WANG (王文春). Generation of reactive atomic species of positive pulsed corona discharges in wetted atmospheric flows of nitrogen and oxygen[J]. Plasma Science and Technology, 2017, 19(6): 64008-064008. DOI: 10.1088/2058-6272/aa632f
    [9]Yuyang WANG (汪宇扬), Cheng CHENG (程诚), Peng GAO (高鹏), Shaopeng LI (李少鹏), Jie SHEN (沈洁), Yan LAN (兰彦), Yongqiang YU (余永强), Paul K CHU (朱剑豪). Cold atmospheric-pressure air plasma treatment of C6 glioma cells: effects of reactive oxygen species in the medium produced by the plasma on cell death[J]. Plasma Science and Technology, 2017, 19(2): 25503-025503. DOI: 10.1088/2058-6272/19/2/025503
    [10]WEN Xiaoqiong (温小琼), Wang Ming (王明), DING Zhenfeng (丁振峰), LIU Guishi (刘贵师). Decoloration of azo dye sunset yellow by a coaxial insulated-rod-to-cylinder underwater streamer discharge system[J]. Plasma Science and Technology, 2012, 14(4): 293-296. DOI: 10.1088/1009-0630/14/4/05

Catalog

    Article views (123) PDF downloads (454) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return