Citation: | Junmyung LEE, Yunho NAM, Jongchan LEE, Hyun Woo LEE, Kwang-Ho KWON. Etching characteristics of thin SiON films using a liquefied perfluorocarbon precursor of C6F12O with a low global warming potential[J]. Plasma Science and Technology, 2020, 22(10): 105505. DOI: 10.1088/2058-6272/ab9b5a |
[1] |
Kim S et al 2016 J. Nanosci. Nanotechnol. 16 5143
|
[2] |
Chiles J et al 2015 Appl. Phys. Lett. 106 111110
|
[3] |
Sirard S et al 2016 Interactions between plasma and block copolymers used in directed self-assembly patterning Proc.SPIE 9782 97820K
|
[4] |
Kal S et al 2017 Dry-plasma-free chemical etch technique for variability reduction in multi-patterning (Conference Presentation) Proc. SPIE 10149 101490P
|
[5] |
Grigaliūnas V et al 2017 Appl. Surf. Sci. 393 287
|
[6] |
Donnelly V M and Kornblit A 2013 J. Vac. Sci. Technol. A 31 050825
|
[7] |
Frankwicz P, Gardner L and Moutinho T 2012 ECS Trans.41 1
|
[8] |
Bai B, An J J and Sawin H H 2006 Appl. Phys. Lett. 88 101504
|
[9] |
Yu S J and Chang M B 2001 Plasma Chem. Plasma Process.21 311
|
[10] |
Donnelly V M et al 1984 J. Appl. Phys. 55 242
|
[11] |
Ding J et al 1993 J. Vac. Sci. Technol. A 11 1283
|
[12] |
Schaepkens M et al 1999 J. Vac. Sci. Technol. A 17 26
|
[13] |
Hayashi H, Kurihara K and Sekine M 1996 Jpn. J. Appl. Phys.35 2488
|
[14] |
Lo S F 2010 Technol. Soc. 32 249
|
[15] |
Park H W, Cha W B and Uhm S 2018 Appl. Chem. Eng. 29 10
|
[16] |
Yonemitsu K, Nakayama K and Sato H 1986 J. Phys. F: Met.Phys. 16 1625
|
[17] |
Sekiya A and Misaki S 2000 J. Fluorine Chem. 101 215
|
[18] |
Krishnan N et al 2003 Alternatives to reduce perfluorinated compound (PFC) emissions from semiconductor dielectric etch processes: meeting environmental commitments while minimizing costs Proc. 2003 IEEE Int. Symp. on Electronics and the Environment (Boston, MA, USA) (Piscataway, NJ:IEEE)1924
|
[19] |
Tsai W T, Chen H P and Hsien W Y 2002 J. Loss Prev.Process Ind. 15 65
|
[20] |
Soda E et al 2009 J. Vac. Sci. Technol. B 27 649
|
[21] |
Li X et al 2002 J. Vac. Sci. Technol. A 20 2052
|
[22] |
www.chemicalbook.com/ChemicalProductProperty_EN_CB2238274.htm
|
[23] |
Zhang X X et al 2017 Energies 10 1170
|
[24] |
Thorp N and Scott R L 1956 J. Phys. Chem. 60 670
|
[25] |
Diefenbacher A and Türk M 2001 Fluid Phase Equilib.182 121
|
[26] |
Uchii T, Suzuki K and Shiiki M 2006 System and method for gas recycling incorporating gas-insulated electric device US Patent No. 7029519 Washington, DC US Patent and Trademark Office
|
[27] |
Chen M J et al 2001 Instability trade-off of inter-layer or inter-metal dielectrics formation with low-k dielectrics on active and field device’s characteristics Proc. 2001 6th Int. Symp.on Plasma-and Process-Induced Damage Monterey (California, USA) (Piscataway, NJ: IEEE) 12–5
|
[28] |
Jang S M, Fu C Y and Chiu Y H 2001 Method to reduce silicon oxynitride etch rate in a silicon oxide dry etch US Patent No. 6297162 Washington, DC US Patent and Trademark Office
|
[29] |
Lee B J et al 2019 Plasma Chem. Plasma Process. 39 339
|
[30] |
Lee J et al 2019 Thin Solid Films 669 227
|
[31] |
Lee B J et al 2019 Plasma Chem. Plasma Process. 39 325
|
[32] |
Kim Y et al 2012 J. Vac. Sci. Technol. A 30 031601
|
[33] |
Johnson E O and Malter L 1950 Phy. Rev. 80 358
|
[34] |
Sugawara M 1998 Plasma Etching: Fundamentals and Applications (Oxford: Oxford University Press)
|
[35] |
Laffosse E et al 2005 J. Electron. Mater. 34 740
|
[36] |
Ok C W and Hahn Y B 2006 Stud. Surf. Sci. Catal. 159 381
|
[37] |
Park J S et al 2003 J. Vac. Sci. Technol. B 21 800
|
[38] |
Lee J et al 2016 Jpn. J. Appl. Phys. 55 106201
|
[39] |
Lee J et al 2019 Plasma Chem. Plasma Process. 39 1127
|
[40] |
Lee J et al 2017 Plasma Chem. Plasma Process. 37 489
|
[41] |
Lee J et al 2018 Vacuum 148 214
|
[42] |
Oehrlein G S et al 1994 J. Vac. Sci. Technol. A 12 323
|
[43] |
Ko Y C, Ratner B D and Hoffman A S 1981 J. Colloid Interface Sci. 82 25
|
[44] |
Fowkes F M, McCarthy D C and Mostafa M A 1980 J. Colloid Interface Sci. 78 200
|
[45] |
Rangel E C et al 2003 Surf. Interface Anal. 35 179
|
1. | Kim, Y., Kang, H., Kim, C. et al. Plasma Atomic Layer Etching of SiO2 and Si3N4 with Low Global Warming C4H3F7O Isomers. ACS Sustainable Chemistry and Engineering, 2023, 11(16): 6136-6142. DOI:10.1021/acssuschemeng.2c05186 |
2. | Kim, J., Choi, G., Kwon, K.-H. High-aspect-ratio oxide etching using CF4/C6F12O plasma in an inductively coupled plasma etching system with low-frequency bias power. Plasma Processes and Polymers, 2023, 20(3): 2200167. DOI:10.1002/ppap.202200167 |
3. | Li, S., Guo, X., Fu, Y. et al. Hydrophobicity changes of polluted silicone rubber introduced by spatial and dose distribution of plasma jet. Plasma Science and Technology, 2022, 24(4): 044006. DOI:10.1088/2058-6272/ac57ff |
4. | Lim, N., Efremov, A., Woo, B. et al. Comparative study of CF4 + O2 and C6F12O + O2 plasmas for reactive-ion etching applications. Plasma Processes and Polymers, 2022, 19(2): 2100129. DOI:10.1002/ppap.202100129 |
5. | Lim, N., Choi, Y.S., Efremov, A. et al. Dry etching performance and gas‐phase parameters of c6f12o + ar plasma in comparison with cf4 + ar. Materials, 2021, 14(7): 1595. DOI:10.3390/ma14071595 |