Advanced Search+
Xuechen LI (李雪辰), Biao WANG (王彪), Pengying JIA (贾鹏英), Linwei YANG (杨林伟), Yaru LI (李亚茹), Jingdi CHU (楚婧娣). Three modes of a direct-current plasma jet operated underwater to degrade methylene blue[J]. Plasma Science and Technology, 2017, 19(11): 115505. DOI: 10.1088/2058-6272/aa86a6
Citation: Xuechen LI (李雪辰), Biao WANG (王彪), Pengying JIA (贾鹏英), Linwei YANG (杨林伟), Yaru LI (李亚茹), Jingdi CHU (楚婧娣). Three modes of a direct-current plasma jet operated underwater to degrade methylene blue[J]. Plasma Science and Technology, 2017, 19(11): 115505. DOI: 10.1088/2058-6272/aa86a6

Three modes of a direct-current plasma jet operated underwater to degrade methylene blue

Funds: This work is sponsored by National Natural Science Foundation of China under Grant Nos. 11575050 and 10805013, One Hundred Talent Project of Hebei Province under Grant No. SLRC2017021, the Midwest Universities Comprehensive Strength Promotion Project, the Natural Science Foundation of Hebei province, China, under Grant Nos. A2015201092, A2016201042 and A2015201199, the Research Foundation of Education Bureau of Hebei province, China, under Grant No. LJRC011 and the 333 Talents Project of Hebei province, China, under Grant No. A2016005005.
More Information
  • Received Date: May 08, 2017
  • intermittently-pulsed discharge, a periodically-pulsed discharge and a continuous discharge with increasing the power voltage. The three discharge modes have different appearances for the plasma plumes. Moreover, gap voltage-current characteristics indicate that the continuous discharge is in a normal glow regime. Spectral lines from reactive species (OH, N2, N2 +,Hα, and O) have been revealed in the emission spectrum of the plasma jet operated underwater. Spectral intensities emitted from OH radical and oxygen atom increase with increasing the power voltage or the gas flow rate, indicating that reactive species are abundant. These reactive species cause the degradation of the methylene blue dye in solution. Effects of the experimental parameters such as the power voltage, the gas flow rate and the treatment time are investigated on the degradation efficiency. Results indicate that the degradation efficiency increases with increasing the power voltage, the gas flow rate or the treatment time. Compared with degradation in the intermittently-pulsed mode or the periodically-pulsed one, it is more efficient in the continuous mode, reaching 98% after 21 min treatment.
  • [1]
    Lu X et al 2016 Phys. Rep. 630 1
    [2]
    Bruggeman P and Leys C 2009 J. Phys. D: Appl. Phys. 42 053001
    [3]
    Němcová L et al 2011 IEEE Trans. Plasma Sci. 39 865
    [4]
    Vanraes P, Nikiforov A and Leys C 2012 J. Phys. D: Appl. Phys. 45 245206
    [5]
    Deng X L et al 2013 Plasma Process. Polym. 10 641
    [6]
    Malik M A, Ghaffar A and Malik S A 2001 Plasma Sources Sci. Technol. 10 82
    [7]
    Wang S et al 2013 Appl. Phys. Lett. 103 264108
    [8]
    Tang Q et al 2009 Plasma Chem. Plasma Process. 29 291
    [9]
    Parkansky N et al 2012 Plasma Chem. Plasma Process. 32 933
    [10]
    Sun P et al 2010 IEEE Trans. Plasma Sci. 38 1892
    [11]
    Bai N et al 2011 Plasma Process. Polym. 8 424
    [12]
    Sugiarto A T, Ohshima T and Sato M 2002 Thin Solid Films 407 174
    [13]
    Lu N et al 2015 IEEE Trans. Plasma Sci. 43 580
    [14]
    Foster J et al 2011 Plasma Sources Sci. Technol. 20 034018
    [15]
    Chen B Y et al 2016 Plasma Sci. Technol. 18 41
    [16]
    Baba K, Kaneko T and Hatakeyama R 2007 Appl. Phys. Lett. 90 201501
    [17]
    Aoki H, Kitano K and Hamaguchi S 2008 Plasma Sources Sci. Technol. 17 025006
    [18]
    Xiong R H et al 2012 Phys. Plasmas 19 023501
    [19]
    Deng X L et al 2013 J. Appl. Phys. 113 023305
    [20]
    Li X C et al 2016 Plasma Sources Sci. Technol. 25 025022
    [21]
    Li X C et al 2013 Plasma Sources Sci. Technol. 22 045007
    [22]
    Vertriest R et al 2003 Plasma Sources Sci. Technol. 12 412
    [23]
    Lu D L et al 2010 IEEE Trans. Plasma Sci. 38 2854
    [24]
    Dors M, Mizeraczyk J and Mok Y S 2006 J. Adv. Oxid. Technol. 9 139
    [25]
    Gao J Z et al 2006 J. Hazard. Mater. 137 431
    [26]
    Nikiforov A Y et al 2011 Plasma Sources Sci. Technol. 20 034008
    [27]
    Ren C S et al 2006 J. Electrost. 64 23
    [28]
    Mraihi A et al 2011 Plasma Sources Sci. Technol. 20 065002
    [29]
    Tang J et al 2012 Phys. Plasmas 19 013501
    [30]
    Zaharie-Butucel D and Anghel S D 2014 Rom. Journ. Phys. 59 757 (https://www.nipne.ro/rjp/2014_59_7-8/0757_ 0766.pdf)
    [31]
    Li X C et al 2014 J. Phys. Soc. Jpn. 83 024502
    [32]
    Dilecce G 2014 Plasma Sources Sci. Technol. 23 015011
    [33]
    de Brito Benetoli L O et al 2012 J. Hazard. Mater. 237–238 55
    [34]
    Huang F M et al 2010 Chem. Eng. J. 162 250
    [35]
    Towne V et al 2009 J. Pharm. Sci. 98 3987
    [36]
    Baba S, Satoh S and Yamabe C 2002 Vacuum 65 489
    [37]
    Teramoto Y, Ono R and Oda T 2009 J. Phys. D: Appl. Phys. 42 235205
    [38]
    Li J et al 2007 Desalination 212 123
    [39]
    Stará Z et al 2009 Desalination 239 283
    [40]
    Malik M A 2010 Plasma Chem. Plasma Process. 30 21
    [41]
    Magureanu M et al 2008 Plasma Chem. Plasma Process. 28 677
    [42]
    Malik M A et al 2002 Plasma Sources Sci. Technol. 11 236
  • Related Articles

    [1]Huijuan WANG (王慧娟), Danni MAO (毛丹妮), Wudi CAO (曹无敌), Xin YAN (闫欣). Analysis of the critical active species for methylene blue decoloration in a dielectric barrier discharge plasma system[J]. Plasma Science and Technology, 2020, 22(10): 105504. DOI: 10.1088/2058-6272/aba345
    [2]Jiacun WU (武珈存), Kaiyue WU (吴凯玥), Chenhua REN (任晨华), Pengying JIA (贾鹏英), Xuechen LI (李雪辰). Comparison of discharge characteristics and methylene blue degradation through a direct-current excited plasma jet with air and oxygen used as working gases[J]. Plasma Science and Technology, 2020, 22(5): 55505-055505. DOI: 10.1088/2058-6272/ab6c00
    [3]R DEBEK, D WIERZBICKI, M MOTAK, M E GALVEZ, P DA COSTA, F AZZOLINA-JURY. Operando FT-IR study on basicity improvement of Ni(Mg, Al)O hydrotalcite-derived catalysts promoted by glow plasma discharge[J]. Plasma Science and Technology, 2019, 21(4): 45503-045503. DOI: 10.1088/2058-6272/aaf759
    [4]Syed ZAHEERUDDIN, Yufan LI (李煜璠), Dongmei ZHAO (赵冬梅), Xinwen MA (马新文), Jie YANG (杨杰). The effect of the direct current electric field on the dynamics of the ultracold plasma[J]. Plasma Science and Technology, 2018, 20(8): 85001-085001. DOI: 10.1088/2058-6272/aac166
    [5]Yue HUA (滑跃), Jian SONG (宋健), Zeyu HAO (郝泽宇), Chunsheng REN (任春生). Plasma characteristics of direct current enhanced cylindrical inductively coupled plasma source[J]. Plasma Science and Technology, 2018, 20(6): 65402-065402. DOI: 10.1088/2058-6272/aaac79
    [6]ihao TIE (铁维昊), Cui MENG (孟萃), Yuting ZHANG (张雨婷), Zirang YAN (闫自让), Qiaogen ZHANG (张乔根). Analysis on discharge process of a plasma-jet trigered gas spark switch[J]. Plasma Science and Technology, 2018, 20(1): 14009-014009. DOI: 10.1088/2058-6272/aa8cbe
    [7]Yue HUA (滑跃), Jian SONG (宋健), Zeyu HAO (郝泽宇), Gailing ZHANG (张改玲), Chunsheng REN (任春生). Effects of direct current discharge on the spatial distribution of cylindrical inductivelycoupled plasma at different gas pressures[J]. Plasma Science and Technology, 2018, 20(1): 14005-014005. DOI: 10.1088/2058-6272/aa8ea8
    [8]LIU Wenzheng (刘文正), LEI Xiao (雷晓), ZHAO Qiang (赵强). Study on Glow Discharge Plasma Used in Polyester Surface Modification[J]. Plasma Science and Technology, 2016, 18(1): 35-40. DOI: 10.1088/1009-0630/18/1/07
    [9]CHANG Zhengshi (常正实), YAO Congwei (姚聪伟), ZHANG Guanjun (张冠军). Non-Thermal Equilibrium Atmospheric Pressure Glow-Like Discharge Plasma Jet[J]. Plasma Science and Technology, 2016, 18(1): 17-22. DOI: 10.1088/1009-0630/18/1/04
    [10]LIU Jingye (刘竞业), ZHANG Ming (张明). Two-Dimensional Simulation of Hydrogen Direct-Current Discharge Plasma[J]. Plasma Science and Technology, 2012, 14(8): 693-398. DOI: 10.1088/1009-0630/14/8/02

Catalog

    Article views (248) PDF downloads (616) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return