Processing math: 0%
Advanced Search+
Hafiz Imran Ahmad QAZI, Muhammad Ajmal KHAN, Jianjun HUANG (黄建军). Spatio-temporal evolution characteristics and pattern formation of a gas–liquid interfacial AC current argon discharge plasma with a deionized water electrode[J]. Plasma Science and Technology, 2021, 23(2): 25402-025402. DOI: 10.1088/2058-6272/abd0e2
Citation: Hafiz Imran Ahmad QAZI, Muhammad Ajmal KHAN, Jianjun HUANG (黄建军). Spatio-temporal evolution characteristics and pattern formation of a gas–liquid interfacial AC current argon discharge plasma with a deionized water electrode[J]. Plasma Science and Technology, 2021, 23(2): 25402-025402. DOI: 10.1088/2058-6272/abd0e2

Spatio-temporal evolution characteristics and pattern formation of a gas–liquid interfacial AC current argon discharge plasma with a deionized water electrode

Funds: This work was supported by National Natural Science Foundation of China (No. 51578309).
More Information
  • Received Date: October 25, 2020
  • Revised Date: December 02, 2020
  • Accepted Date: December 03, 2020
  • A discharge ignited by an AC power source in contact with deionized water as one of the electrodes is investigated. Immediately after initiation, the discharge exhibits a unique phenomenon: the gas-phase discharge is extended into the liquid. Later, a cone-like structure is observed at the liquid surface. Synchronous monitoring of current–voltage characteristics and liquid properties versus time suggests that the discharge shapes are functions of the liquid properties. The spatio-temporal profiles indicate the potential effects of water, ambient air impurities, and metastable argon on the discharge chemistry. This becomes more obvious near the liquid surface due to increasing production of various transient reactive species such as centerdot OH and NO centerdot. Moreover, it is revealed that thermalization of the rotational population distributions of the rotational states (N in the Q1 branch of the OH \left({\rm{A}}{}^{2}{\rm{\Sigma }}^{+},\upsilon ^{\prime} =0\to {\rm{X}}{}^{2}{\rm{\Pi }}_{3/2},\upsilon ^{\prime\prime} =0\right) band ro-vibrational system is influenced by the humid environment near the liquid surface. In addition, the transient behaviors of instantaneous concentrations of long-lived reactive species (LRS) such as H2O2, {{\rm{NO}}}_{{\rm{2}}}^{-}, and {{\rm{NO}}}_{3}^{-} are observed with lengthening the discharge time. The production of multiple transient and LRS proposes AC excited gas–liquid argon discharge as a potential applicant in industrial wastewater cleaning, clinical medicine, and agriculture.
  • [1]
    Tatarova E et al 2014 Plasma Sources Sci. Technol. 23 063002
    [2]
    Chen Z T et al 2017 Sci. Rep. 7 12163
    [3]
    Zhou R W et al 2019 Innov. Food Sci. Emerg. Technol. 53 36
    [4]
    Mariotti D et al 2012 Plasma Process. Polym. 9 1074
    [5]
    Yu J et al 2018 Spectrochim. Acta B 145 64
    [6]
    Vanraes P and Bogaerts A 2018 Appl. Phys. Rev. 5 031103
    [7]
    Bruggeman P J et al 2016 Plasma Sources Sci. Technol. 25 053002
    [8]
    Chen Z T et al 2020 IEEE Trans. Plasma Sci. 48 3455
    [9]
    Shirai N, Ibuka S and Ishii S 2009 Appl. Phys. Express 2 036001
    [10]
    Verreycken T, Bruggeman P and Leys C 2009 J. Appl. Phys.105 083312
    [11]
    Zheng P C et al 2015 Plasma Sources Sci. Technol. 24 015010
    [12]
    Li X C et al 2020 Plasma Process. Polym. 17 e1900223
    [13]
    Bruggeman P et al 2010 Plasma Sources Sci. Technol. 19 015016
    [14]
    Qazi H I A et al 2018 Plasma Sci. Technol. 20 075403
    [15]
    Lukes P et al 2014 Plasma Sources Sci. Technol. 23 015019
    [16]
    Liu D X et al 2016 Sci. Rep. 6 23737
    [17]
    Bruggeman P et al 2009 Plasma Sources Sci. Technol. 18 025017
    [18]
    An W, Baumung K and Bluhm H 2007 J. Appl. Phys. 101 053302
    [19]
    Verreycken T et al 2010 Plasma Sources Sci. Technol. 19 045004
    [20]
    Zheng K et al 2019 Chemosphere 222 872
    [21]
    Liang J P et al 2020 Vacuum 181 109644
    [22]
    Jose J, Ramanujam S and Philip L 2019 Chem. Eng. J.360 1341
    [23]
    van Gessel A F H, Alards K M J and Bruggeman P J 2013 J. Phys. D: Appl. Phys. 46 265202
    [24]
    Pereira S et al 2019 Clin. Plasma Med. 13 9
    [25]
    Xiang L J et al 2018 Free Radic. Biol. Med. 124 205
    [26]
    Park D P et al 2013 Curr. Appl. Phys. 13 S19
    [27]
    Takaki K et al 2013 J. Phys.: Conf. Ser. 418 012140
    [28]
    Sellers R M 1980 Analyst 105 950
    [29]
    Qazi H I A et al 2018 IEEE Trans. Plasma Sci. 46 2856
    [30]
    Rice E W et al 2012 Standard Methods for the Examination of Water and Wastewater 22nd edn (Washington, DC: American Public Health Association)
    [31]
    Inguglia E S et al 2020 Innov. Food Sci. Emerg. Technol. 59 102276
    [32]
    Shih K Y and Locke B R 2011 IEEE Trans. Plasma Sci.39 883
    [33]
    Bruggeman P and Leys C 2009 J. Phys. D: Appl. Phys. 42 053001
    [34]
    Š̌unka P 2001 Phys. Plasmas 8 2587
    [35]
    Park J Y et al 2006 J. Phys. D: Appl. Phys. 39 3805
    [36]
    Tabayashi K and Shobatake K 1988 J. Chem. Phys. 88 835
    [37]
    Leblond J B et al 1981 J. Chem. Phys. 74 6242
    [38]
    Schmidt-Bleker A et al 2016 Plasma Sources Sci. Technol. 25 015005
    [39]
    Lukes P and Locke B R 2005 J. Phys. D: Appl. Phys. 38 4074
    [40]
    Liu D X et al 2010 Plasma Sources Sci. Technol. 19 025018
    [41]
    Tsuji M et al 2003 Appl. Surf. Sci. 217 134
    [42]
    van der Horst R M et al 2012 J. Phys. D: Appl. Phys. 45 345201
    [43]
    Sarani A, Nikiforov A Y and Leys C 2010 Phys. Plasmas 17 063504
    [44]
    Khan M A et al 2019 Plasma Sci. Technol. 21 055401
    [45]
    Khan M A, Li J and Li H P 2019 Plasma Sci. Technol. 21 095402
    [46]
    Herzberg G 1950 Molecular Spectra and Molecular Structure: I. Spectra of Diatomic Molecules 2nd edn (Princeton, NJ: D. Van Nosrtand Company, Inc.)
    [47]
    Rassou S et al 2020 J. Mol. Spectrosc. 370 111278
    [48]
    van Gils C A J et al 2013 J. Phys. D: Appl. Phys. 46 175203
    [49]
    Machala Z et al 2013 Plasma Process. Polym. 10 649
    [50]
    Xu Z M et al 2020 Purif. Technol. 230 115862
    [51]
    Lukes P et al 2008 Plasma Sources Sci. Technol. 17 024012
  • Related Articles

    [1]Cheng FENG (冯诚), Yibo HU (胡一波), Chenggang JIN (金成刚), Lanjian ZHUGE (诸葛兰剑), Xuemei WU (吴雪梅), Wenli WANG (王文利). The effect of atmospheric pressure glow discharge plasma treatment on the dyeing properties of silk fabric[J]. Plasma Science and Technology, 2020, 22(1): 15503-015503. DOI: 10.1088/2058-6272/ab4c4e
    [2]Amin JIANG (蒋阿敏), Chao YE (叶超), Xiangying WANG (王响英), Min ZHU (朱敏), Su ZHANG (张苏). Ion property and electrical characteristics of 60 MHz very-high-frequency magnetron discharge at low pressure[J]. Plasma Science and Technology, 2018, 20(10): 105401. DOI: 10.1088/2058-6272/aad379
    [3]XIN Qing (辛青), LI Zhongjian (李中坚), LEI Lecheng (雷乐成), YANG Bin (杨彬). Inactivation of Bacteria in Oil Field Injected Water by a Pulsed Plasma Discharge Process[J]. Plasma Science and Technology, 2016, 18(9): 943-949. DOI: 10.1088/1009-0630/18/9/11
    [4]LIU Wenzheng (刘文正), LEI Xiao (雷晓), ZHAO Qiang (赵强). Study on Glow Discharge Plasma Used in Polyester Surface Modification[J]. Plasma Science and Technology, 2016, 18(1): 35-40. DOI: 10.1088/1009-0630/18/1/07
    [5]CHANG Zhengshi(常正实), YAO Congwei(姚聪伟), MU Haibao(穆海宝), ZHANG Guanjun(张冠军). Study on the Property Evolution of Atmospheric Pressure Plasma Jets in Helium[J]. Plasma Science and Technology, 2014, 16(1): 83-88. DOI: 10.1088/1009-0630/16/1/18
    [6]LIU Wenzheng(刘文正), LI Chuanhui(李传辉). Study on the Generation Characteristics of Dielectric Barrier Discharge Plasmas on Water Surface[J]. Plasma Science and Technology, 2014, 16(1): 26-31. DOI: 10.1088/1009-0630/16/1/06
    [7]S. SHAHIDI, M. GHORANNEVISS. Sterilization of Cotton Fabrics Using Plasma Treatment[J]. Plasma Science and Technology, 2013, 15(10): 1031-1033. DOI: 10.1088/1009-0630/15/10/13
    [8]A. RASHIDI, S. SHAHIDI, M. GHORANNEVISS, S. DALALSHARIFI, J. WIENER. Effect of Plasma on the Zeta Potential of Cotton Fabrics[J]. Plasma Science and Technology, 2013, 15(5): 455-458. DOI: 10.1088/1009-0630/15/5/12
    [9]LIU Hongxia (刘红霞), LIU Yun (刘云). Investigation on the Effects and Mechanisms of PTFE Surface Modification by Low Pressure Plasma?[J]. Plasma Science and Technology, 2012, 14(8): 728-734. DOI: 10.1088/1009-0630/14/8/09
    [10]ZHONG Shao-Feng (钟少锋). Surface Modification of Polypropylene Microporous Membrane by Atmospheric- Pressure Plasma Immobilization of N,N-dimethylamino ethyl methacrylate[J]. Plasma Science and Technology, 2010, 12(5): 619-627.
  • Cited by

    Periodical cited type(1)

    1. Ge, W., Cai, G., Qu, C. et al. A new type of plasma irradiation-resistant amorphous TiZrHfTaW refractory multi-component alloy. Acta Materialia, 2025. DOI:10.1016/j.actamat.2025.120822

    Other cited types(0)

Catalog

    Article views (157) PDF downloads (293) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return