Advanced Search+
Quan SHI (石权), Shin KAJITA, Shuyu DAI (戴舒宇), Shuangyuan FENG (冯双园), Noriyasu OHNO. Modeling of the impurity-induced silicon nanocone growth by low energy helium plasma irradiation[J]. Plasma Science and Technology, 2021, 23(4): 45503-045503. DOI: 10.1088/2058-6272/abea71
Citation: Quan SHI (石权), Shin KAJITA, Shuyu DAI (戴舒宇), Shuangyuan FENG (冯双园), Noriyasu OHNO. Modeling of the impurity-induced silicon nanocone growth by low energy helium plasma irradiation[J]. Plasma Science and Technology, 2021, 23(4): 45503-045503. DOI: 10.1088/2058-6272/abea71

Modeling of the impurity-induced silicon nanocone growth by low energy helium plasma irradiation

Funds: This work was supported in part by a Grant-in Aid for Scientific Research (Nos. 17KK0132, 19H01874) from the Japan
Society for the Promotion of Science (JSPS). The contribution by Dr Shuyu Dai was also supported by National MCF
Energy R&D Program of China (Nos. 2018YFE0311100 and 2018YFE0303105) and National Natural Science Foundation of China (No. 12075047).
More Information
  • Received Date: November 04, 2020
  • Revised Date: February 24, 2021
  • Accepted Date: February 25, 2021
  • The formation mechanism of nanocone structure on silicon (Si) surface irradiated by helium plasma has been investigated by experiments and simulations. Impurity (molybdenum) aggregated as shields on Si was found to be a key factor to form a high density of nanocone in our previous study. Here to concrete this theory, a simulation work has been developed with SURO code based on the impurity concentration measurement of the nanocones by using electron dispersive x-ray spectroscopy. The formation process of the nanocone from a flat surface was presented. The modeling structure under an inclining ion incident direction was in good agreement with the experimental result. Moreover, the redeposition effect was proposed as another important process of nanocone formation based on results from the comparison of the cone diameter and sputtering yield between cases with and without the redeposition effect.
  • [1]
    Kanechika M, Sugimoto N and Mitsushima Y 2002 J. Vac. Sci. Technol. B 20 1298
    [2]
    Ao X Y et al 2012 Appl. Phys. Lett. 101 111901
    [3]
    Steglich M et al 2014 J. Appl. Phys. 116 173503
    [4]
    Xia Y et al 2011 Sol. Energy 85 1574
    [5]
    Her T H et al 1998 Appl. Phys. Lett. 73 1673
    [6]
    Kajita S et al 2013 J. Appl. Phys. 113 134301
    [7]
    Kajita S et al 2014 App. Surf. Sci. 303 438
    [8]
    Takamura S et al 2016 Japan. J. Appl. Phys. 55 120301
    [9]
    Takamura S et al 2019 Appl. Surf. Sci. 487 755
    [10]
    Thompson M et al 2020 Plasma Process. Polym. 17 2000126
    [11]
    Shi Q et al 2020 J. Appl. Phys. 128 023301
    [12]
    Ozaydin G et al 2008 J. Vac. Sci. Technol. B 26 551
    [13]
    Tanemura M et al 2004 Nucl. Instrum. Methods Phys. Res. B 215 137
    [14]
    Qiu Y et al 2012 Opt. Express 20 22087
    [15]
    Ma X L et al 2002 J. Cryst. Growth 234 654
    [16]
    Nishijima D et al 2019 Nucl. Mater. Energy 18 67
    [17]
    Robinson R S and Rossnagel S M 1982 J. Vac. Sci. Technol. 21 790
    [18]
    Dai S Y et al 2015 J. Nucl. Mater. 463 372
    [19]
    Shi Q et al 2017 Contrib. Plasma Phys. 57 329
    [20]
    Goldstein J I, Williams D B and Cliff G 1986 Quantitative x-ray analysis Principles of Analytical Electron Microscopy ed D C Joy et al (Boston: Springer) p 155
    [21]
    Gnaser H 2007 Energy and angular distributions of sputtered species Sputtering by Particle Bombardment. Topics in Applied Physics ed R Behrisch and W Eckstein (Berlin: Springer) p 231
    [22]
    Eckstein W et al 1996 Physical sputtering and radiationenhanced sublimation Physical Processes of the Interaction of Fusion Plasmas with Solids (New York: Academic) p 93
    [23]
    Yamamura Y and Mizuno Y 1985 Low-energy sputterings with the Monte Carlo Program ACAT Institute of Plasma Physics, Nagoya University IPPJ-AM-40
    [24]
    Eckstein W et al 1993 Sputtering data Report IPP 9/82 Max-Planck-Institut für Plasmaphysik
    [25]
    Wehner G K 1985 J. Vac. Sci. Technol. A 3 1821
    [26]
    Begrambekov L B, Zakharov A M and Telkovsky V G 1996 Nucl. Instrum. Methods Phys. Res. B 115 456
  • Related Articles

    [1]ZHANG Junmin (张俊民), LU Chunrong (卢春荣), GUAN Yonggang (关永刚), LIU Weidong (刘卫东). Calculation of Nozzle Ablation During Arcing Period in an SF6 Auto-Expansion Circuit Breaker[J]. Plasma Science and Technology, 2016, 18(5): 506-511. DOI: 10.1088/1009-0630/18/5/11
    [2]ZHONG Jianying (钟建英), GUO Yujing (郭煜敬), ZHANG Hao (张豪). Pressure and Arc Voltage Measurement in a 252 kV SF6 Puffer Circuit Breaker[J]. Plasma Science and Technology, 2016, 18(5): 490-493. DOI: 10.1088/1009-0630/18/5/08
    [3]ZHANG Junmin (张俊民 ), CHI Chengbin (迟程缤), GUAN Yonggang (关永刚), LIU Weidong (刘卫东), WU Junhui (吴军辉). Simulation of Arc Rotation and Its Effects on Pressure of Expansion Volume in an Auto-Expansion SF6 Circuit Breaker[J]. Plasma Science and Technology, 2016, 18(3): 287-291. DOI: 10.1088/1009-0630/18/3/12
    [4]LIN Xin (林莘), WANG Feiming (王飞鸣), XU Jianyuan (徐建源), XIA Yalong (夏亚龙), LIU Weidong (刘卫东). Study on the Mathematical Model of Dielectric Recovery Characteristics in High Voltage SF6 Circuit Breaker[J]. Plasma Science and Technology, 2016, 18(3): 223-229. DOI: 10.1088/1009-0630/18/3/02
    [5]A. K. FEROUANI, M. LEMERINI, L. MERAD, M. HOUALEF. Numerical Modelling Point-to-Plane of Negative Corona Discharge in N2 Under Non-Uniform Electric Field[J]. Plasma Science and Technology, 2015, 17(6): 469-474. DOI: 10.1088/1009-0630/17/6/06
    [6]WEI Hao (魏浩), SUN Fengju (孙凤举), YIN Jiahui (尹佳辉), HU Yixiang (呼义翔), LIANG Tianxue (梁天学), CONG Peitian (丛培天), QIU Aici (邱爱慈). Numerical Simulation of Azimuthal Uniformity of Injection Currents in Single-Point-Feed Induction Voltage Adders[J]. Plasma Science and Technology, 2015, 17(3): 235-240. DOI: 10.1088/1009-0630/17/3/11
    [7]CHENG Xian (程显), DUAN Xiongying (段雄英), LIAO Minfu (廖敏夫), et al.. The Voltage Distribution Characteristics of a Hybrid Circuit Breaker During High Current Interruption[J]. Plasma Science and Technology, 2013, 15(8): 800-806. DOI: 10.1088/1009-0630/15/8/16
    [8]Vahid ABBASI, Ahmad GHOLAMI, Kaveh NIAYESH. The Effects of SF6-Cu Mixture on the Arc Characteristics in a Medium Voltage Puffer Gas Circuit Breaker due to Variation of Thermodynamic Properties and Transport Coefficients[J]. Plasma Science and Technology, 2013, 15(6): 586-592. DOI: 10.1088/1009-0630/15/6/18
    [9]YIN Mingli (阴明利), TIAN Canxin (田灿鑫), WANG Zesong (王泽松), FU Dejun (付德君). Influences of Bias Voltage and Target Current on Structure, Microhardness and Friction Coefficient of Multilayered TiAlN/ CrN Coatings Synthesized by Cathodic Arc Plasma Deposition[J]. Plasma Science and Technology, 2013, 15(6): 582-585. DOI: 10.1088/1009-0630/15/6/17
    [10]YANG Fei(杨飞), MA Ruiguang ( 马瑞光), WU Yi( 吴翊), SUN Hao( 孙昊), NIU Chunping( 纽春萍), RONG Mingzhe(荣命哲). Numerical study on arc plasma behavior during arc commutation process in direct current circuit breaker[J]. Plasma Science and Technology, 2012, 14(2): 167-171. DOI: 10.1088/1009-0630/14/2/16
  • Cited by

    Periodical cited type(2)

    1. Yang, H., Zhang, J., Shen, Z. Water-based metamaterial absorber for temperature modulation. Physica Scripta, 2024, 99(10): 105563. DOI:10.1088/1402-4896/ad7b8a
    2. Liu, Y.L., Chen, W.C., Guo, B. Magneto-optical effects on the properties of the photonic spin Hall effect owing to the defect mode in photonic crystals with plasma. AIP Advances, 2019, 9(7): 075111. DOI:10.1063/1.5094664

    Other cited types(0)

Catalog

    Article views (114) PDF downloads (115) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return