Advanced Search+
Quan SHI (石权), Shin KAJITA, Shuyu DAI (戴舒宇), Shuangyuan FENG (冯双园), Noriyasu OHNO. Modeling of the impurity-induced silicon nanocone growth by low energy helium plasma irradiation[J]. Plasma Science and Technology, 2021, 23(4): 45503-045503. DOI: 10.1088/2058-6272/abea71
Citation: Quan SHI (石权), Shin KAJITA, Shuyu DAI (戴舒宇), Shuangyuan FENG (冯双园), Noriyasu OHNO. Modeling of the impurity-induced silicon nanocone growth by low energy helium plasma irradiation[J]. Plasma Science and Technology, 2021, 23(4): 45503-045503. DOI: 10.1088/2058-6272/abea71

Modeling of the impurity-induced silicon nanocone growth by low energy helium plasma irradiation

Funds: This work was supported in part by a Grant-in Aid for Scientific Research (Nos. 17KK0132, 19H01874) from the Japan
Society for the Promotion of Science (JSPS). The contribution by Dr Shuyu Dai was also supported by National MCF
Energy R&D Program of China (Nos. 2018YFE0311100 and 2018YFE0303105) and National Natural Science Foundation of China (No. 12075047).
More Information
  • Received Date: November 04, 2020
  • Revised Date: February 24, 2021
  • Accepted Date: February 25, 2021
  • The formation mechanism of nanocone structure on silicon (Si) surface irradiated by helium plasma has been investigated by experiments and simulations. Impurity (molybdenum) aggregated as shields on Si was found to be a key factor to form a high density of nanocone in our previous study. Here to concrete this theory, a simulation work has been developed with SURO code based on the impurity concentration measurement of the nanocones by using electron dispersive x-ray spectroscopy. The formation process of the nanocone from a flat surface was presented. The modeling structure under an inclining ion incident direction was in good agreement with the experimental result. Moreover, the redeposition effect was proposed as another important process of nanocone formation based on results from the comparison of the cone diameter and sputtering yield between cases with and without the redeposition effect.
  • [1]
    Kanechika M, Sugimoto N and Mitsushima Y 2002 J. Vac. Sci. Technol. B 20 1298
    [2]
    Ao X Y et al 2012 Appl. Phys. Lett. 101 111901
    [3]
    Steglich M et al 2014 J. Appl. Phys. 116 173503
    [4]
    Xia Y et al 2011 Sol. Energy 85 1574
    [5]
    Her T H et al 1998 Appl. Phys. Lett. 73 1673
    [6]
    Kajita S et al 2013 J. Appl. Phys. 113 134301
    [7]
    Kajita S et al 2014 App. Surf. Sci. 303 438
    [8]
    Takamura S et al 2016 Japan. J. Appl. Phys. 55 120301
    [9]
    Takamura S et al 2019 Appl. Surf. Sci. 487 755
    [10]
    Thompson M et al 2020 Plasma Process. Polym. 17 2000126
    [11]
    Shi Q et al 2020 J. Appl. Phys. 128 023301
    [12]
    Ozaydin G et al 2008 J. Vac. Sci. Technol. B 26 551
    [13]
    Tanemura M et al 2004 Nucl. Instrum. Methods Phys. Res. B 215 137
    [14]
    Qiu Y et al 2012 Opt. Express 20 22087
    [15]
    Ma X L et al 2002 J. Cryst. Growth 234 654
    [16]
    Nishijima D et al 2019 Nucl. Mater. Energy 18 67
    [17]
    Robinson R S and Rossnagel S M 1982 J. Vac. Sci. Technol. 21 790
    [18]
    Dai S Y et al 2015 J. Nucl. Mater. 463 372
    [19]
    Shi Q et al 2017 Contrib. Plasma Phys. 57 329
    [20]
    Goldstein J I, Williams D B and Cliff G 1986 Quantitative x-ray analysis Principles of Analytical Electron Microscopy ed D C Joy et al (Boston: Springer) p 155
    [21]
    Gnaser H 2007 Energy and angular distributions of sputtered species Sputtering by Particle Bombardment. Topics in Applied Physics ed R Behrisch and W Eckstein (Berlin: Springer) p 231
    [22]
    Eckstein W et al 1996 Physical sputtering and radiationenhanced sublimation Physical Processes of the Interaction of Fusion Plasmas with Solids (New York: Academic) p 93
    [23]
    Yamamura Y and Mizuno Y 1985 Low-energy sputterings with the Monte Carlo Program ACAT Institute of Plasma Physics, Nagoya University IPPJ-AM-40
    [24]
    Eckstein W et al 1993 Sputtering data Report IPP 9/82 Max-Planck-Institut für Plasmaphysik
    [25]
    Wehner G K 1985 J. Vac. Sci. Technol. A 3 1821
    [26]
    Begrambekov L B, Zakharov A M and Telkovsky V G 1996 Nucl. Instrum. Methods Phys. Res. B 115 456
  • Related Articles

    [1]Fusheng WANG (王富生), Xiangteng MA (马襄腾), Han CHEN (陈汉), Yao ZHANG (张耀). Evolution simulation of lightning discharge based on a magnetohydrodynamics method[J]. Plasma Science and Technology, 2018, 20(7): 75301-075301. DOI: 10.1088/2058-6272/aab841
    [2]Arif ULLAH, Majid KHAN, M KAMRAN, R KHAN, Zhengmao SHENG (盛正卯). Monte-Carlo simulation of a stochastic differential equation[J]. Plasma Science and Technology, 2017, 19(12): 125001. DOI: 10.1088/2058-6272/aa8f3f
    [3]Jian YANG (杨健), Angjian WU (吴昂键), Xiaodong LI (李晓东), Yang LIU (刘阳), Fengsen ZHU (朱凤森), Zhiliang CHEN (陈志良), Jianhua YAN (严建华), Ruijuan CHEN (陈瑞娟), Wangjun SHEN (沈望俊). Experimental and simulation investigation of electrical and plasma parameters in a low pressure inductively coupled argon plasma[J]. Plasma Science and Technology, 2017, 19(11): 115402. DOI: 10.1088/2058-6272/aa885f
    [4]LU Xiaofei (陆小飞), FU Peng (傅鹏), ZHUANG Ming (庄明), QIU Lilong (邱立龙), HU Liangbing (胡良兵). Process Modeling and Dynamic Simulation for EAST Helium Refrigerator[J]. Plasma Science and Technology, 2016, 18(6): 693-698. DOI: 10.1088/1009-0630/18/6/18
    [5]WANG Lijun(王立军), HUANG Xiaolong(黄小龙), JIA Shenli(贾申利), ZHOU Xin(周鑫), SHI Zongqian(史宗谦). Modeling and Simulation of Deflected Anode Erosion in Vacuum Arcs[J]. Plasma Science and Technology, 2014, 16(3): 226-231. DOI: 10.1088/1009-0630/16/3/10
    [6]ZHUANG Juan (庄娟), SUN Jizhong (孙继忠), SANG Chaofeng (桑超峰), WANG Dezhen (王德真). Numerical Simulation of VHF E®ects on Densities of Important Species for Silicon Film Deposition at Atmospheric Pressure[J]. Plasma Science and Technology, 2012, 14(12): 1106-1109. DOI: 10.1088/1009-0630/14/12/13
    [7]YANG Fei (杨飞), RONG Mingzhe (荣命哲), WU Yi (吴翊), SUN Hao (孙昊), MA Ruiguang (马瑞光), NIU Chunping (纽春萍). Numerical Simulation of the Eddy Current Effects in the Arc Splitting Process[J]. Plasma Science and Technology, 2012, 14(11): 974-979. DOI: 10.1088/1009-0630/14/11/05
    [8]LIU Jingye (刘竞业), ZHANG Ming (张明). Two-Dimensional Simulation of Hydrogen Direct-Current Discharge Plasma[J]. Plasma Science and Technology, 2012, 14(8): 693-398. DOI: 10.1088/1009-0630/14/8/02
    [9]BAI Bing (白冰), ZHA Jun (査俊), ZHANG Xiaoning (张晓宁), WANG Cheng (王城), XIA Weidong (夏维东). Simulation of Magnetically Dispersed Arc Plasma[J]. Plasma Science and Technology, 2012, 14(2): 118-121. DOI: 10.1088/1009-0630/14/2/07
    [10]DENG Yongfeng(邓永锋), TAN Chang(谭畅), HAN Xianwei(韩先伟), TAN Yonghua(谭永华). Numerical Simulation of the Self-Heating Effect Induced by Electron Beam Plasma in Atmosphere[J]. Plasma Science and Technology, 2012, 14(2): 89-93. DOI: 10.1088/1009-0630/14/2/01
  • Cited by

    Periodical cited type(4)

    1. Kajita, S., Shi, Q., Tabata, K. et al. Germanium nanostructures by helium plasma irradiation. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 2024, 63(7): 07SP07. DOI:10.35848/1347-4065/ad5afe
    2. Zhao, P., Peng, J.-G., Momanyi, N.K. et al. Black Aerogel Based on Short-Time High-Flux He Ion Implantation. Advanced Functional Materials, 2024. DOI:10.1002/adfm.202408995
    3. Zhang, H., Sun, J., Wang, Y. et al. Molecular dynamics simulation analysis of the stress around an up-migrating helium bubble under tungsten surface and its bursting. Materials Today Communications, 2022. DOI:10.1016/j.mtcomm.2022.103602
    4. Shi, Q., Kajita, S., Feng, S. et al. The dependence of Mo ratio on the formation of uniform black silicon by helium plasma irradiation. Journal of Physics D: Applied Physics, 2021, 54(40): 405202. DOI:10.1088/1361-6463/ac1190

    Other cited types(0)

Catalog

    Article views (114) PDF downloads (115) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return